#!/usr/bin/env python # coding: utf-8 # # p26: Eigenvalues of 2nd order Chebyshev diff. matrix # In[3]: get_ipython().run_line_magic('config', "InlineBackend.figure_format='svg'") from chebPy import * from numpy import dot,argsort,diag,real,imag,pi,array,polyfit,polyval,zeros from numpy.linalg import eig from matplotlib.pyplot import figure,loglog,semilogy,plot,title,ylabel,text,xlim # In[4]: N = 60; D, x = cheb(N); D2 = dot(D,D); D2 = D2[1:N,1:N] Lam, V = eig(D2) ii = argsort(-Lam); e = Lam[ii]; V = V[:,ii] # Plot eigenvalues figure(figsize=(8,4)) loglog(-e,'o') semilogy(2*N/pi*array([1,1]),array([1,1e6]),'--') ylabel('eigenvalue') title('N='+str(N)+' max |$\\lambda$| = '+str(max(-e)/N**4)+'$N^4$') text(2.1*N/pi,24,'$2\\pi/N$') # Plot eigenmode N/4 (physical) figure(figsize=(8,4)) vN4 = zeros(N+1) vN4[1:N] = V[:,N//4]; xx = arange(-1.0,1.01,0.01) vv = polyval(polyfit(x,vN4,N),xx) plot(xx,vv,'-') plot(x,vN4,'o') xlim((-1.0,1.0)) title('eigenmode N/4') # Plot eigenmode N (nonphysical) figure(figsize=(8,4)) vN = V[:,N-2] semilogy(x[1:N],abs(vN)) plot(x[1:N],abs(vN),'o') xlim((-1.0,1.0)) title('absolute value of eigenmode N (log scale)');