#!/usr/bin/env python # coding: utf-8 # # p05b: Repetition of p05 via real FFT # In[1]: get_ipython().run_line_magic('config', "InlineBackend.figure_format='svg'") # For complex v, delete "real" commands. from numpy import pi,inf,linspace,maximum,abs,zeros,arange,real,sin,cos,exp from numpy.fft import rfft,irfft from numpy.linalg import norm from matplotlib.pyplot import figure,subplot,plot,axis,title,text # In[2]: # Set up grid and differentiation matrix: N = 24; h = 2*pi/N; x = h*arange(1,N+1); # wave numbers ik = 1j*arange(0,N//2+1) # Differentiation of a hat function: v = maximum(0.0,1.0-abs(x-pi)/2.0) v_hat = rfft(v) w_hat = ik * v_hat; w_hat[N//2] = 0.0 w = irfft(w_hat) figure(figsize=(10,6)) subplot(3,2,1) plot(x,v,'.-') axis([0, 2*pi, -.5, 1.5]) title('function') subplot(3,2,2) plot(x,w,'.-') axis([0, 2*pi, -1, 1]) title('spectral derivative') # Differentiation of exp(sin(x)): v = exp(sin(x)); vprime = cos(x)*v; v_hat = rfft(v) w_hat = ik * v_hat; w_hat[N//2] = 0.0 w = irfft(w_hat) subplot(3,2,3) plot(x,v,'.-') axis([0, 2*pi, 0, 3]) subplot(3,2,4) plot(x,w,'.-') axis([0, 2*pi, -2, 2]) error = norm(w-vprime,inf) text(1.5,1.4,"max error="+str(error));