#!/usr/bin/env python # coding: utf-8 # In[ ]: get_ipython().run_line_magic('pip', 'install pandas==0.24.1 --user') get_ipython().run_line_magic('pip', 'install tensorboardX --user') get_ipython().run_line_magic('pip', 'install bs4 --user') get_ipython().run_line_magic('pip', 'install plotly --user') get_ipython().run_line_magic('pip', 'install -U auquan_toolbox --user') # ### This notebook shows how Auquan Toolbox can be used to trade on momentum and mean reversion # # Documentation on how to use the toolbox can be found [here](https://github.com/Auquan/auquan-toolbox-python#3-backtesting). # In[ ]: from backtester.trading_system_parameters import TradingSystemParameters from backtester.features.feature import Feature from backtester.dataSource.yahoo_data_source import YahooStockDataSource from backtester.timeRule.custom_time_rule import CustomTimeRule from backtester.executionSystem.simple_execution_system import SimpleExecutionSystem from backtester.orderPlacer.backtesting_order_placer import BacktestingOrderPlacer from backtester.trading_system import TradingSystem from backtester.constants import * import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from datetime import timedelta # ### This is the static part of an experiment # # It is similar to writing a data loader and trainer for a deep learning project. Once written for a particular experiment we hardly need to change it. # In[ ]: class MyTradingParams(TradingSystemParameters): def __init__(self, tradingFunctions): self.__tradingFunctions = tradingFunctions super(MyTradingParams, self).__init__() self.__dataSetId = 'equity_data' self.__instrumentIds = self.__tradingFunctions.getSymbolsToTrade() self.__startDate = '2015/01/02' self.__endDate = '2017/08/31' def getDataParser(self): ''' Returns an instance of class DataParser. Source of data for instruments ''' instrumentIds = self.__tradingFunctions.getSymbolsToTrade() return YahooStockDataSource( cachedFolderName = 'historicalData/', dataSetId = self.__dataSetId, instrumentIds = instrumentIds, startDateStr = self.__startDate, endDateStr = self.__endDate, ) def getTimeRuleForUpdates(self): return CustomTimeRule( startDate = self.__startDate, endDate = self.__endDate, frequency = 'D', sample = '30' ) def getFrequencyOfFeatureUpdates(self): return timedelta(days = 1) def getStartingCapital(self): if len(self.__tradingFunctions.getSymbolsToTrade()) > 0: return 1000*len(self.__tradingFunctions.getSymbolsToTrade()) else: return 30000 def getCustomFeatures(self): ''' This is a way to use any custom features you might have made. Returns a dictionary where: key: featureId to access this feature (Make sure this doesnt conflict with any of the pre defined feature Ids) value: Your custom Class which computes this feature. The class should be an instance of Feature Eg. if your custom class is MyCustomFeature, and you want to access this via featureId='my_custom_feature', you will import that class, and return this function as {'my_custom_feature': MyCustomFeature} ''' return { 'my_custom_feature': MyCustomFeature, 'prediction': TrainingPredictionFeature, 'zero_fees': FeesCalculator, 'benchmark_PnL': BuyHoldPnL, 'score': ScoreFeature } def getInstrumentFeatureConfigDicts(self): ''' Returns an array of instrument feature config dictionaries instrument feature config Dictionary has the following keys: featureId: a string representing the type of feature you want to use featureKey: a string representing the key you will use to access the value of this feature params: A dictionary with which contains other optional params if needed by the feature ''' predictionDict = { 'featureKey': 'prediction', 'featureId': 'prediction', 'params': {} } feesConfigDict = { 'featureKey': 'fees', 'featureId': 'zero_fees', 'params': {} } profitlossConfigDict = { 'featureKey': 'pnl', 'featureId': 'pnl', 'params': { 'price': self.getPriceFeatureKey(), 'fees': 'fees' } } capitalConfigDict = { 'featureKey': 'capital', 'featureId': 'capital', 'params': { 'price': 'adjClose', 'fees': 'fees', 'capitalReqPercent': 0.95 } } benchmarkDict = { 'featureKey': 'benchmark', 'featureId': 'benchmark_PnL', 'params': {'pnlKey': 'pnl'} } scoreDict = { 'featureKey': 'score', 'featureId': 'score', 'params': { 'featureName1': 'pnl', 'featureName2':'benchmark' } } stockFeatureConfigs = self.__tradingFunctions.getInstrumentFeatureConfigDicts() return { INSTRUMENT_TYPE_STOCK: stockFeatureConfigs + [ predictionDict, feesConfigDict, profitlossConfigDict, capitalConfigDict, benchmarkDict, scoreDict ] } def getMarketFeatureConfigDicts(self): ''' Returns an array of market feature config dictionaries having the following keys: featureId: a string representing the type of feature you want to use featureKey: a string representing the key you will use to access the value of this feature params: A dictionary with which contains other optional params if needed by the feature ''' scoreDict = { 'featureKey': 'score', 'featureId': 'score_ll', 'params': { 'featureName': self.getPriceFeatureKey(), 'instrument_score_feature': 'score' } } return [scoreDict] def getPrediction(self, time, updateNum, instrumentManager): predictions = pd.Series(index = self.__instrumentIds) predictions = self.__tradingFunctions.getPrediction(time, updateNum, instrumentManager, predictions) return predictions def getExecutionSystem(self): ''' Returns the type of execution system we want to use. Its an implementation of the class ExecutionSystem It converts prediction to intended positions for different instruments. ''' return SimpleExecutionSystem( enter_threshold = 0.7, exit_threshold = 0.55, longLimit = 1, shortLimit = 1, capitalUsageLimit = 0.10*self.getStartingCapital(), enterlotSize = 1, exitlotSize = 1, limitType = 'L', price = 'adjClose' ) def getOrderPlacer(self): ''' Returns the type of order placer we want to use. It's an implementation of the class OrderPlacer. It helps place an order, and also read confirmations of orders being placed. For Backtesting, you can just use the BacktestingOrderPlacer, which places the order which you want, and automatically confirms it too. ''' return BacktestingOrderPlacer() def getLookbackSize(self): ''' Returns the amount of lookback data you want for your calculations. The historical market features and instrument features are only stored upto this amount. This number is the number of times we have updated our features. ''' return 120 def getPriceFeatureKey(self): ''' The name of column containing the instrument price ''' return 'adjClose' def getInstrumentsIds(self): ''' Get all instrument ids ''' return self.__instrumentIds # ### Let's define some of our own features # In[ ]: class TrainingPredictionFeature(Feature): @classmethod def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager): tf = MyTradingFunctions() t = MyTradingParams(tf) return t.getPrediction(time, updateNum, instrumentManager) class FeesCalculator(Feature): @classmethod def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager): return pd.Series(0, index = instrumentManager.getAllInstrumentsByInstrumentId()) class BuyHoldPnL(Feature): @classmethod def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager): instrumentLookbackData = instrumentManager.getLookbackInstrumentFeatures() priceData = instrumentLookbackData.getFeatureDf('adjClose') if len(priceData) < 2: return pd.Series(0, index = instrumentManager.getAllInstrumentsByInstrumentId()) else: bhpnl = instrumentLookbackData.getFeatureDf(featureKey).iloc[-1] bhpnl += priceData.iloc[-1] - priceData.iloc[-2] return bhpnl class ScoreFeature(Feature): @classmethod def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager): instrumentLookbackData = instrumentManager.getLookbackInstrumentFeatures() if len(instrumentLookbackData.getFeatureDf(featureParams['featureName1'])) > 0: feature1 = instrumentLookbackData.getFeatureDf(featureParams['featureName1']).iloc[-1] feature2 = instrumentLookbackData.getFeatureDf(featureParams['featureName2']).iloc[-1] for instrumentId in feature1.index: pnls = instrumentLookbackData.getFeatureDf('pnl')[instrumentId] positions = instrumentLookbackData.getFeatureDf('position')[instrumentId] print(instrumentId) print('pnl: %.2f'%pnls[-1]) if len(positions) > 2 and np.abs(positions[-1] - positions[-2]) > 0: print('Position changed to: %.2f'%positions[-1]) toRtn = (feature1 - feature2) / feature2.abs() toRtn[toRtn.isnull()] = 0 toRtn[toRtn == np.Inf] = 0 else: toRtn=0 return toRtn # ### This is the part where the magic takes place, all the logic for prediction and carrying out trades goes here # In[ ]: class MyTradingFunctions(): def __init__(self): self.count = 0 self.params = {} def getSymbolsToTrade(self): ''' Specify the stock names that you want to trade. ''' return ['AAPL'] def getInstrumentFeatureConfigDicts(self): ''' Specify all Features you want to use by creating config dictionaries. Create one dictionary per feature and return them in an array. Feature config Dictionary have the following keys: featureId: a str for the type of feature you want to use featureKey: {optional} a str for the key you will use to call this feature If not present, will just use featureId params: {optional} A dictionary with which contains other optional params if needed by the feature msDict = { 'featureKey': 'ms_5', 'featureId': 'moving_sum', 'params': { 'period': 5, 'featureName': 'basis' } } return [msDict] You can now use this feature by in getPRediction() calling it's featureKey, 'ms_5' ''' ma1Dict = { 'featureKey': 'ma_90', 'featureId': 'moving_average', 'params': { 'period': 90, 'featureName': 'adjClose' } } mom30Dict = { 'featureKey': 'mom_30', 'featureId': 'momentum', 'params': { 'period': 30, 'featureName': 'adjClose' } } mom10Dict = { 'featureKey': 'mom_10', 'featureId': 'momentum', 'params': { 'period': 10, 'featureName': 'adjClose' } } return [ma1Dict, mom10Dict, mom30Dict] def getPrediction(self, time, updateNum, instrumentManager, predictions): ''' Combine all the features to create the desired predictions for each stock. 'predictions' is Pandas Series with stock as index and predictions as values We first call the holder for all the instrument features for all stocks as lookbackInstrumentFeatures = instrumentManager.getLookbackInstrumentFeatures() Then call the dataframe for a feature using its feature_key as ms5Data = lookbackInstrumentFeatures.getFeatureDf('ms_5') This returns a dataFrame for that feature for ALL stocks for all times upto lookback time Now you can call just the last data point for ALL stocks as ms5 = ms5Data.iloc[-1] You can call last datapoint for one stock 'ABC' as value_for_abs = ms5['ABC'] Output of the prediction function is used by the toolbox to make further trading decisions and evaluate your score. ''' # self.updateCount() - uncomment if you want a counter # holder for all the instrument features for all instruments lookbackInstrumentFeatures = instrumentManager.getLookbackInstrumentFeatures() ############################################################################################# ### TODO : FILL THIS FUNCTION TO RETURN A BUY (1) or SELL (0) prediction for each stock ### ### USE TEMPLATE BELOW AS EXAMPLE ### ### HINT: Use the Hurst Exponent ### http://analytics-magazine.org/the-hurst-exponent-predictability-of-time-series/ ############################################################################################# # Here's an example implementation of the hurst exponent def hurst_f(input_ts, lags_to_test=20): # interpretation of return value # hurst < 0.5 - input_ts is mean reverting # hurst = 0.5 - input_ts is effectively random/geometric brownian motion # hurst > 0.5 - input_ts is trending tau = [] lagvec = [] # Step through the different lags for lag in range(2, lags_to_test): # produce price difference with lag pp = np.subtract(input_ts[lag:], input_ts[:-lag]) # Write the different lags into a vector lagvec.append(lag) # Calculate the variance of the differnce vector tau.append(np.sqrt(np.std(pp))) # linear fit to double-log graph (gives power) m = np.polyfit(np.log10(lagvec), np.log10(tau), 1) # calculate hurst hurst = m[0]*2 return hurst # dataframe for a historical instrument feature (ma_90 in this case). The index is the timestamps # of upto lookback data points. The columns of this dataframe are the stock symbols/instrumentIds. mom10Data = lookbackInstrumentFeatures.getFeatureDf('mom_10') mom30Data = lookbackInstrumentFeatures.getFeatureDf('mom_30') ma90Data = lookbackInstrumentFeatures.getFeatureDf('ma_90') # Here we are making predictions on the basis of Hurst exponent if enough data is available, otherwise # we simply get out of our position if len(ma90Data.index)>20: mom30 = mom30Data.iloc[-1] mom10 = mom10Data.iloc[-1] ma90 = ma90Data.iloc[-1] # Calculate Hurst Exponent hurst = ma90Data.apply(hurst_f, axis=0) # Go long if Hurst > 0.5 and both long term and short term momentum are positive predictions[(hurst > 0.5) & (mom30 > 0) & (mom10 > 0)] = 1 # Go short if Hurst > 0.5 and both long term and short term momentum are negative predictions[(hurst > 0.5) & (mom30 <= 0) & (mom10 <= 0)] = 0 # Get out of position if Hurst > 0.5 and long term momentum is positive while short term is negative predictions[(hurst > 0.5) & (mom30 > 0) & (mom10 <= 0)] = 0.5 # Get out of position if Hurst > 0.5 and long term momentum is negative while short term is positive predictions[(hurst > 0.5) & (mom30 <= 0) & (mom10 > 0)] = 0.5 # Get out of position if Hurst < 0.5 predictions[hurst <= 0.5] = 0.5 else: # If no sufficient data then don't take any positions predictions.values[:] = 0.5 return predictions def updateCount(self): self.count = self.count + 1 # #### Here's another example of a custom feature # In[ ]: class MyCustomFeature(Feature): '''' Custom Feature to implement for instrument. This function would return the value of the feature you want to implement. 1. create a new class MyCustomFeatureClassName for the feature and implement your logic in the function computeForInstrument() - 2. modify function getCustomFeatures() to return a dictionary with Id for this class (follow formats like {'my_custom_feature_identifier': MyCustomFeatureClassName}. Make sure 'my_custom_feature_identifier' doesnt conflict with any of the pre defined feature Ids def getCustomFeatures(self): return {'my_custom_feature_identifier': MyCustomFeatureClassName} 3. create a dict for this feature in getInstrumentFeatureConfigDicts() above. Dict format is: customFeatureDict = {'featureKey': 'my_custom_feature_key', 'featureId': 'my_custom_feature_identifier', 'params': {'param1': 'value1'}} You can now use this feature by calling it's featureKey, 'my_custom_feature_key' in getPrediction() ''' @classmethod def computeForInstrument(cls, updateNum, time, featureParams, featureKey, instrumentManager): # Custom parameter which can be used as input to computation of this feature param1Value = featureParams['param1'] # A holder for the all the instrument features lookbackInstrumentFeatures = instrumentManager.getLookbackInstrumentFeatures() # dataframe for a historical instrument feature (basis in this case). The index is the timestamps # atmost upto lookback data points. The columns of this dataframe are the stocks/instrumentIds. lookbackInstrumentValue = lookbackInstrumentFeatures.getFeatureDf('adjClose') # The last row of the previous dataframe gives the last calculated value for that feature (basis in this case) # This returns a series with stocks/instrumentIds as the index. currentValue = lookbackInstrumentValue.iloc[-1] if param1Value == 'value1': return currentValue * 0.1 else: return currentValue * 0.5 # ### Time to run the backtester! # In[ ]: tf = MyTradingFunctions() tsParams = MyTradingParams(tf) tradingSystem = TradingSystem(tsParams) results = tradingSystem.startTrading() # Results for each timestamp are stored as csv file inside the folder `./runLogs`, we also create logs using tensorboardX inside `./tb_logs` so have a look at that as well using `tensorboard --logdir=tb_logs` # In[ ]: results