#!/usr/bin/env python # coding: utf-8 # **Chapter 3 – Classification** # # _This notebook contains all the sample code and solutions to the exercises in chapter 3._ # # # #
# Run in Google Colab #
# **Warning**: this is the code for the 1st edition of the book. Please visit https://github.com/ageron/handson-ml2 for the 2nd edition code, with up-to-date notebooks using the latest library versions. # # Setup # First, let's make sure this notebook works well in both python 2 and 3, import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures: # In[1]: # To support both python 2 and python 3 from __future__ import division, print_function, unicode_literals # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "classification" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) # # MNIST # **Warning**: `fetch_mldata()` is deprecated since Scikit-Learn 0.20. You should use `fetch_openml()` instead. However, it returns the unsorted MNIST dataset, whereas `fetch_mldata()` returned the dataset sorted by target (the training set and the test test were sorted separately). In general, this is fine, but if you want to get the exact same results as before, you need to sort the dataset using the following function: # In[2]: def sort_by_target(mnist): reorder_train = np.array(sorted([(target, i) for i, target in enumerate(mnist.target[:60000])]))[:, 1] reorder_test = np.array(sorted([(target, i) for i, target in enumerate(mnist.target[60000:])]))[:, 1] mnist.data[:60000] = mnist.data[reorder_train] mnist.target[:60000] = mnist.target[reorder_train] mnist.data[60000:] = mnist.data[reorder_test + 60000] mnist.target[60000:] = mnist.target[reorder_test + 60000] # In[3]: try: from sklearn.datasets import fetch_openml mnist = fetch_openml('mnist_784', version=1, cache=True, as_frame=False) mnist.target = mnist.target.astype(np.int8) # fetch_openml() returns targets as strings sort_by_target(mnist) # fetch_openml() returns an unsorted dataset except ImportError: from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original') mnist["data"], mnist["target"] # In[4]: mnist.data.shape # In[5]: X, y = mnist["data"], mnist["target"] X.shape # In[6]: y.shape # In[7]: 28*28 # In[8]: some_digit = X[36000] some_digit_image = some_digit.reshape(28, 28) plt.imshow(some_digit_image, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") save_fig("some_digit_plot") plt.show() # In[9]: def plot_digit(data): image = data.reshape(28, 28) plt.imshow(image, cmap = mpl.cm.binary, interpolation="nearest") plt.axis("off") # In[10]: # EXTRA def plot_digits(instances, images_per_row=10, **options): size = 28 images_per_row = min(len(instances), images_per_row) images = [instance.reshape(size,size) for instance in instances] n_rows = (len(instances) - 1) // images_per_row + 1 row_images = [] n_empty = n_rows * images_per_row - len(instances) images.append(np.zeros((size, size * n_empty))) for row in range(n_rows): rimages = images[row * images_per_row : (row + 1) * images_per_row] row_images.append(np.concatenate(rimages, axis=1)) image = np.concatenate(row_images, axis=0) plt.imshow(image, cmap = mpl.cm.binary, **options) plt.axis("off") # In[11]: plt.figure(figsize=(9,9)) example_images = np.r_[X[:12000:600], X[13000:30600:600], X[30600:60000:590]] plot_digits(example_images, images_per_row=10) save_fig("more_digits_plot") plt.show() # In[12]: y[36000] # In[13]: X_train, X_test, y_train, y_test = X[:60000], X[60000:], y[:60000], y[60000:] # In[14]: import numpy as np shuffle_index = np.random.permutation(60000) X_train, y_train = X_train[shuffle_index], y_train[shuffle_index] # # Binary classifier # In[15]: y_train_5 = (y_train == 5) y_test_5 = (y_test == 5) # **Note**: a few hyperparameters will have a different default value in future versions of Scikit-Learn, so a warning is issued if you do not set them explicitly. This is why we set `max_iter=5` and `tol=-np.infty`, to get the same results as in the book, while avoiding the warnings. # In[16]: from sklearn.linear_model import SGDClassifier sgd_clf = SGDClassifier(max_iter=5, tol=-np.infty, random_state=42) sgd_clf.fit(X_train, y_train_5) # In[17]: sgd_clf.predict([some_digit]) # In[18]: from sklearn.model_selection import cross_val_score cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy") # In[19]: from sklearn.model_selection import StratifiedKFold from sklearn.base import clone skfolds = StratifiedKFold(n_splits=3, random_state=42, shuffle=True) for train_index, test_index in skfolds.split(X_train, y_train_5): clone_clf = clone(sgd_clf) X_train_folds = X_train[train_index] y_train_folds = (y_train_5[train_index]) X_test_fold = X_train[test_index] y_test_fold = (y_train_5[test_index]) clone_clf.fit(X_train_folds, y_train_folds) y_pred = clone_clf.predict(X_test_fold) n_correct = sum(y_pred == y_test_fold) print(n_correct / len(y_pred)) # In[20]: from sklearn.base import BaseEstimator class Never5Classifier(BaseEstimator): def fit(self, X, y=None): pass def predict(self, X): return np.zeros((len(X), 1), dtype=bool) # In[21]: never_5_clf = Never5Classifier() cross_val_score(never_5_clf, X_train, y_train_5, cv=3, scoring="accuracy") # In[22]: from sklearn.model_selection import cross_val_predict y_train_pred = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3) # In[23]: from sklearn.metrics import confusion_matrix confusion_matrix(y_train_5, y_train_pred) # In[24]: y_train_perfect_predictions = y_train_5 # In[25]: confusion_matrix(y_train_5, y_train_perfect_predictions) # In[26]: from sklearn.metrics import precision_score, recall_score precision_score(y_train_5, y_train_pred) # In[27]: 4344 / (4344 + 1307) # In[28]: recall_score(y_train_5, y_train_pred) # In[29]: 4344 / (4344 + 1077) # In[30]: from sklearn.metrics import f1_score f1_score(y_train_5, y_train_pred) # In[31]: 4344 / (4344 + (1077 + 1307)/2) # In[32]: y_scores = sgd_clf.decision_function([some_digit]) y_scores # In[33]: threshold = 0 y_some_digit_pred = (y_scores > threshold) # In[34]: y_some_digit_pred # In[35]: threshold = 200000 y_some_digit_pred = (y_scores > threshold) y_some_digit_pred # In[36]: y_scores = cross_val_predict(sgd_clf, X_train, y_train_5, cv=3, method="decision_function") # Note: there was an [issue](https://github.com/scikit-learn/scikit-learn/issues/9589) in Scikit-Learn 0.19.0 (fixed in 0.19.1) where the result of `cross_val_predict()` was incorrect in the binary classification case when using `method="decision_function"`, as in the code above. The resulting array had an extra first dimension full of 0s. Just in case you are using 0.19.0, we need to add this small hack to work around this issue: # In[37]: y_scores.shape # In[38]: # hack to work around issue #9589 in Scikit-Learn 0.19.0 if y_scores.ndim == 2: y_scores = y_scores[:, 1] # In[39]: from sklearn.metrics import precision_recall_curve precisions, recalls, thresholds = precision_recall_curve(y_train_5, y_scores) # In[40]: def plot_precision_recall_vs_threshold(precisions, recalls, thresholds): plt.plot(thresholds, precisions[:-1], "b--", label="Precision", linewidth=2) plt.plot(thresholds, recalls[:-1], "g-", label="Recall", linewidth=2) plt.xlabel("Threshold", fontsize=16) plt.legend(loc="upper left", fontsize=16) plt.ylim([0, 1]) plt.figure(figsize=(8, 4)) plot_precision_recall_vs_threshold(precisions, recalls, thresholds) plt.xlim([-700000, 700000]) save_fig("precision_recall_vs_threshold_plot") plt.show() # In[41]: (y_train_pred == (y_scores > 0)).all() # In[42]: y_train_pred_90 = (y_scores > 70000) # In[43]: precision_score(y_train_5, y_train_pred_90) # In[44]: recall_score(y_train_5, y_train_pred_90) # In[45]: def plot_precision_vs_recall(precisions, recalls): plt.plot(recalls, precisions, "b-", linewidth=2) plt.xlabel("Recall", fontsize=16) plt.ylabel("Precision", fontsize=16) plt.axis([0, 1, 0, 1]) plt.figure(figsize=(8, 6)) plot_precision_vs_recall(precisions, recalls) save_fig("precision_vs_recall_plot") plt.show() # # ROC curves # In[46]: from sklearn.metrics import roc_curve fpr, tpr, thresholds = roc_curve(y_train_5, y_scores) # In[47]: def plot_roc_curve(fpr, tpr, label=None): plt.plot(fpr, tpr, linewidth=2, label=label) plt.plot([0, 1], [0, 1], 'k--') plt.axis([0, 1, 0, 1]) plt.xlabel('False Positive Rate', fontsize=16) plt.ylabel('True Positive Rate', fontsize=16) plt.figure(figsize=(8, 6)) plot_roc_curve(fpr, tpr) save_fig("roc_curve_plot") plt.show() # In[48]: from sklearn.metrics import roc_auc_score roc_auc_score(y_train_5, y_scores) # **Note**: we set `n_estimators=10` to avoid a warning about the fact that its default value will be set to 100 in Scikit-Learn 0.22. # In[49]: from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(n_estimators=10, random_state=42) y_probas_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3, method="predict_proba") # In[50]: y_scores_forest = y_probas_forest[:, 1] # score = proba of positive class fpr_forest, tpr_forest, thresholds_forest = roc_curve(y_train_5,y_scores_forest) # In[51]: plt.figure(figsize=(8, 6)) plt.plot(fpr, tpr, "b:", linewidth=2, label="SGD") plot_roc_curve(fpr_forest, tpr_forest, "Random Forest") plt.legend(loc="lower right", fontsize=16) save_fig("roc_curve_comparison_plot") plt.show() # In[52]: roc_auc_score(y_train_5, y_scores_forest) # In[53]: y_train_pred_forest = cross_val_predict(forest_clf, X_train, y_train_5, cv=3) precision_score(y_train_5, y_train_pred_forest) # In[54]: recall_score(y_train_5, y_train_pred_forest) # # Multiclass classification # In[55]: sgd_clf.fit(X_train, y_train) sgd_clf.predict([some_digit]) # In[56]: some_digit_scores = sgd_clf.decision_function([some_digit]) some_digit_scores # In[57]: np.argmax(some_digit_scores) # In[58]: sgd_clf.classes_ # In[59]: sgd_clf.classes_[5] # In[60]: from sklearn.multiclass import OneVsOneClassifier ovo_clf = OneVsOneClassifier(SGDClassifier(max_iter=5, tol=-np.infty, random_state=42)) ovo_clf.fit(X_train, y_train) ovo_clf.predict([some_digit]) # In[61]: len(ovo_clf.estimators_) # In[62]: forest_clf.fit(X_train, y_train) forest_clf.predict([some_digit]) # In[63]: forest_clf.predict_proba([some_digit]) # In[64]: cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy") # In[65]: from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train.astype(np.float64)) cross_val_score(sgd_clf, X_train_scaled, y_train, cv=3, scoring="accuracy") # In[66]: y_train_pred = cross_val_predict(sgd_clf, X_train_scaled, y_train, cv=3) conf_mx = confusion_matrix(y_train, y_train_pred) conf_mx # In[67]: def plot_confusion_matrix(matrix): """If you prefer color and a colorbar""" fig = plt.figure(figsize=(8,8)) ax = fig.add_subplot(111) cax = ax.matshow(matrix) fig.colorbar(cax) # In[68]: plt.matshow(conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_plot", tight_layout=False) plt.show() # In[69]: row_sums = conf_mx.sum(axis=1, keepdims=True) norm_conf_mx = conf_mx / row_sums # In[70]: np.fill_diagonal(norm_conf_mx, 0) plt.matshow(norm_conf_mx, cmap=plt.cm.gray) save_fig("confusion_matrix_errors_plot", tight_layout=False) plt.show() # In[71]: cl_a, cl_b = 3, 5 X_aa = X_train[(y_train == cl_a) & (y_train_pred == cl_a)] X_ab = X_train[(y_train == cl_a) & (y_train_pred == cl_b)] X_ba = X_train[(y_train == cl_b) & (y_train_pred == cl_a)] X_bb = X_train[(y_train == cl_b) & (y_train_pred == cl_b)] plt.figure(figsize=(8,8)) plt.subplot(221); plot_digits(X_aa[:25], images_per_row=5) plt.subplot(222); plot_digits(X_ab[:25], images_per_row=5) plt.subplot(223); plot_digits(X_ba[:25], images_per_row=5) plt.subplot(224); plot_digits(X_bb[:25], images_per_row=5) save_fig("error_analysis_digits_plot") plt.show() # # Multilabel classification # In[72]: from sklearn.neighbors import KNeighborsClassifier y_train_large = (y_train >= 7) y_train_odd = (y_train % 2 == 1) y_multilabel = np.c_[y_train_large, y_train_odd] knn_clf = KNeighborsClassifier() knn_clf.fit(X_train, y_multilabel) # In[73]: knn_clf.predict([some_digit]) # **Warning**: the following cell may take a very long time (possibly hours depending on your hardware). # In[74]: y_train_knn_pred = cross_val_predict(knn_clf, X_train, y_multilabel, cv=3, n_jobs=-1) f1_score(y_multilabel, y_train_knn_pred, average="macro") # # Multioutput classification # In[75]: noise = np.random.randint(0, 100, (len(X_train), 784)) X_train_mod = X_train + noise noise = np.random.randint(0, 100, (len(X_test), 784)) X_test_mod = X_test + noise y_train_mod = X_train y_test_mod = X_test # In[76]: some_index = 5500 plt.subplot(121); plot_digit(X_test_mod[some_index]) plt.subplot(122); plot_digit(y_test_mod[some_index]) save_fig("noisy_digit_example_plot") plt.show() # In[77]: knn_clf.fit(X_train_mod, y_train_mod) clean_digit = knn_clf.predict([X_test_mod[some_index]]) plot_digit(clean_digit) save_fig("cleaned_digit_example_plot") # # Extra material # ## Dummy (ie. random) classifier # In[78]: from sklearn.dummy import DummyClassifier dmy_clf = DummyClassifier() y_probas_dmy = cross_val_predict(dmy_clf, X_train, y_train_5, cv=3, method="predict_proba") y_scores_dmy = y_probas_dmy[:, 1] # In[79]: fprr, tprr, thresholdsr = roc_curve(y_train_5, y_scores_dmy) plot_roc_curve(fprr, tprr) # ## KNN classifier # In[80]: from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier(n_jobs=-1, weights='distance', n_neighbors=4) knn_clf.fit(X_train, y_train) # In[81]: y_knn_pred = knn_clf.predict(X_test) # In[82]: from sklearn.metrics import accuracy_score accuracy_score(y_test, y_knn_pred) # In[83]: from scipy.ndimage.interpolation import shift def shift_digit(digit_array, dx, dy, new=0): return shift(digit_array.reshape(28, 28), [dy, dx], cval=new).reshape(784) plot_digit(shift_digit(some_digit, 5, 1, new=100)) # In[84]: X_train_expanded = [X_train] y_train_expanded = [y_train] for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): shifted_images = np.apply_along_axis(shift_digit, axis=1, arr=X_train, dx=dx, dy=dy) X_train_expanded.append(shifted_images) y_train_expanded.append(y_train) X_train_expanded = np.concatenate(X_train_expanded) y_train_expanded = np.concatenate(y_train_expanded) X_train_expanded.shape, y_train_expanded.shape # In[85]: knn_clf.fit(X_train_expanded, y_train_expanded) # In[86]: y_knn_expanded_pred = knn_clf.predict(X_test) # In[87]: accuracy_score(y_test, y_knn_expanded_pred) # In[88]: ambiguous_digit = X_test[2589] knn_clf.predict_proba([ambiguous_digit]) # In[89]: plot_digit(ambiguous_digit) # # Exercise solutions # ## 1. An MNIST Classifier With Over 97% Accuracy # **Warning**: the next cell may take hours to run, depending on your hardware. # In[90]: from sklearn.model_selection import GridSearchCV param_grid = [{'weights': ["uniform", "distance"], 'n_neighbors': [3, 4, 5]}] knn_clf = KNeighborsClassifier() grid_search = GridSearchCV(knn_clf, param_grid, cv=5, verbose=3, n_jobs=-1) grid_search.fit(X_train, y_train) # In[91]: grid_search.best_params_ # In[92]: grid_search.best_score_ # In[93]: from sklearn.metrics import accuracy_score y_pred = grid_search.predict(X_test) accuracy_score(y_test, y_pred) # ## 2. Data Augmentation # In[94]: from scipy.ndimage.interpolation import shift # In[95]: def shift_image(image, dx, dy): image = image.reshape((28, 28)) shifted_image = shift(image, [dy, dx], cval=0, mode="constant") return shifted_image.reshape([-1]) # In[96]: image = X_train[1000] shifted_image_down = shift_image(image, 0, 5) shifted_image_left = shift_image(image, -5, 0) plt.figure(figsize=(12,3)) plt.subplot(131) plt.title("Original", fontsize=14) plt.imshow(image.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.subplot(132) plt.title("Shifted down", fontsize=14) plt.imshow(shifted_image_down.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.subplot(133) plt.title("Shifted left", fontsize=14) plt.imshow(shifted_image_left.reshape(28, 28), interpolation="nearest", cmap="Greys") plt.show() # In[97]: X_train_augmented = [image for image in X_train] y_train_augmented = [label for label in y_train] for dx, dy in ((1, 0), (-1, 0), (0, 1), (0, -1)): for image, label in zip(X_train, y_train): X_train_augmented.append(shift_image(image, dx, dy)) y_train_augmented.append(label) X_train_augmented = np.array(X_train_augmented) y_train_augmented = np.array(y_train_augmented) # In[98]: shuffle_idx = np.random.permutation(len(X_train_augmented)) X_train_augmented = X_train_augmented[shuffle_idx] y_train_augmented = y_train_augmented[shuffle_idx] # In[99]: knn_clf = KNeighborsClassifier(**grid_search.best_params_) # In[100]: knn_clf.fit(X_train_augmented, y_train_augmented) # In[101]: y_pred = knn_clf.predict(X_test) accuracy_score(y_test, y_pred) # By simply augmenting the data, we got a 0.5% accuracy boost. :) # ## 3. Tackle the Titanic dataset # The goal is to predict whether or not a passenger survived based on attributes such as their age, sex, passenger class, where they embarked and so on. # First, login to [Kaggle](https://www.kaggle.com/) and go to the [Titanic challenge](https://www.kaggle.com/c/titanic) to download `train.csv` and `test.csv`. Save them to the `datasets/titanic` directory. # Next, let's load the data: # In[102]: import os TITANIC_PATH = os.path.join("datasets", "titanic") # In[103]: import pandas as pd def load_titanic_data(filename, titanic_path=TITANIC_PATH): csv_path = os.path.join(titanic_path, filename) return pd.read_csv(csv_path) # In[104]: train_data = load_titanic_data("train.csv") test_data = load_titanic_data("test.csv") # The data is already split into a training set and a test set. However, the test data does *not* contain the labels: your goal is to train the best model you can using the training data, then make your predictions on the test data and upload them to Kaggle to see your final score. # Let's take a peek at the top few rows of the training set: # In[105]: train_data.head() # The attributes have the following meaning: # * **Survived**: that's the target, 0 means the passenger did not survive, while 1 means he/she survived. # * **Pclass**: passenger class. # * **Name**, **Sex**, **Age**: self-explanatory # * **SibSp**: how many siblings & spouses of the passenger aboard the Titanic. # * **Parch**: how many children & parents of the passenger aboard the Titanic. # * **Ticket**: ticket id # * **Fare**: price paid (in pounds) # * **Cabin**: passenger's cabin number # * **Embarked**: where the passenger embarked the Titanic # Let's get more info to see how much data is missing: # In[106]: train_data.info() # Okay, the **Age**, **Cabin** and **Embarked** attributes are sometimes null (less than 891 non-null), especially the **Cabin** (77% are null). We will ignore the **Cabin** for now and focus on the rest. The **Age** attribute has about 19% null values, so we will need to decide what to do with them. Replacing null values with the median age seems reasonable. # The **Name** and **Ticket** attributes may have some value, but they will be a bit tricky to convert into useful numbers that a model can consume. So for now, we will ignore them. # Let's take a look at the numerical attributes: # In[107]: train_data.describe() # * Yikes, only 38% **Survived**. :( That's close enough to 40%, so accuracy will be a reasonable metric to evaluate our model. # * The mean **Fare** was £32.20, which does not seem so expensive (but it was probably a lot of money back then). # * The mean **Age** was less than 30 years old. # Let's check that the target is indeed 0 or 1: # In[108]: train_data["Survived"].value_counts() # Now let's take a quick look at all the categorical attributes: # In[109]: train_data["Pclass"].value_counts() # In[110]: train_data["Sex"].value_counts() # In[111]: train_data["Embarked"].value_counts() # The Embarked attribute tells us where the passenger embarked: C=Cherbourg, Q=Queenstown, S=Southampton. # Now let's build our preprocessing pipelines. We will reuse the `DataframeSelector` we built in the previous chapter to select specific attributes from the `DataFrame`: # In[112]: from sklearn.base import BaseEstimator, TransformerMixin # A class to select numerical or categorical columns # since Scikit-Learn doesn't handle DataFrames yet class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attribute_names): self.attribute_names = attribute_names def fit(self, X, y=None): return self def transform(self, X): return X[self.attribute_names] # Let's build the pipeline for the numerical attributes: # # **Warning**: Since Scikit-Learn 0.20, the `sklearn.preprocessing.Imputer` class was replaced by the `sklearn.impute.SimpleImputer` class. # In[113]: from sklearn.pipeline import Pipeline try: from sklearn.impute import SimpleImputer # Scikit-Learn 0.20+ except ImportError: from sklearn.preprocessing import Imputer as SimpleImputer num_pipeline = Pipeline([ ("select_numeric", DataFrameSelector(["Age", "SibSp", "Parch", "Fare"])), ("imputer", SimpleImputer(strategy="median")), ]) # In[114]: num_pipeline.fit_transform(train_data) # We will also need an imputer for the string categorical columns (the regular `SimpleImputer` does not work on those): # In[115]: # Inspired from stackoverflow.com/questions/25239958 class MostFrequentImputer(BaseEstimator, TransformerMixin): def fit(self, X, y=None): self.most_frequent_ = pd.Series([X[c].value_counts().index[0] for c in X], index=X.columns) return self def transform(self, X, y=None): return X.fillna(self.most_frequent_) # **Warning**: earlier versions of the book used the `LabelBinarizer` or `CategoricalEncoder` classes to convert each categorical value to a one-hot vector. It is now preferable to use the `OneHotEncoder` class. Since Scikit-Learn 0.20 it can handle string categorical inputs (see [PR #10521](https://github.com/scikit-learn/scikit-learn/issues/10521)), not just integer categorical inputs. If you are using an older version of Scikit-Learn, you can import the new version from `future_encoders.py`: # In[116]: try: from sklearn.preprocessing import OrdinalEncoder # just to raise an ImportError if Scikit-Learn < 0.20 from sklearn.preprocessing import OneHotEncoder except ImportError: from future_encoders import OneHotEncoder # Scikit-Learn < 0.20 # Now we can build the pipeline for the categorical attributes: # In[117]: cat_pipeline = Pipeline([ ("select_cat", DataFrameSelector(["Pclass", "Sex", "Embarked"])), ("imputer", MostFrequentImputer()), ("cat_encoder", OneHotEncoder(sparse=False)), ]) # In[118]: cat_pipeline.fit_transform(train_data) # Finally, let's join the numerical and categorical pipelines: # In[119]: from sklearn.pipeline import FeatureUnion preprocess_pipeline = FeatureUnion(transformer_list=[ ("num_pipeline", num_pipeline), ("cat_pipeline", cat_pipeline), ]) # Cool! Now we have a nice preprocessing pipeline that takes the raw data and outputs numerical input features that we can feed to any Machine Learning model we want. # In[120]: X_train = preprocess_pipeline.fit_transform(train_data) X_train # Let's not forget to get the labels: # In[121]: y_train = train_data["Survived"] # We are now ready to train a classifier. Let's start with an `SVC`: # In[122]: from sklearn.svm import SVC svm_clf = SVC(gamma="auto") svm_clf.fit(X_train, y_train) # Great, our model is trained, let's use it to make predictions on the test set: # In[123]: X_test = preprocess_pipeline.transform(test_data) y_pred = svm_clf.predict(X_test) # And now we could just build a CSV file with these predictions (respecting the format excepted by Kaggle), then upload it and hope for the best. But wait! We can do better than hope. Why don't we use cross-validation to have an idea of how good our model is? # In[124]: from sklearn.model_selection import cross_val_score svm_scores = cross_val_score(svm_clf, X_train, y_train, cv=10) svm_scores.mean() # Okay, over 73% accuracy, clearly better than random chance, but it's not a great score. Looking at the [leaderboard](https://www.kaggle.com/c/titanic/leaderboard) for the Titanic competition on Kaggle, you can see that you need to reach above 80% accuracy to be within the top 10% Kagglers. Some reached 100%, but since you can easily find the [list of victims](https://www.encyclopedia-titanica.org/titanic-victims/) of the Titanic, it seems likely that there was little Machine Learning involved in their performance! ;-) So let's try to build a model that reaches 80% accuracy. # Let's try a `RandomForestClassifier`: # In[125]: from sklearn.ensemble import RandomForestClassifier forest_clf = RandomForestClassifier(n_estimators=100, random_state=42) forest_scores = cross_val_score(forest_clf, X_train, y_train, cv=10) forest_scores.mean() # That's much better! # Instead of just looking at the mean accuracy across the 10 cross-validation folds, let's plot all 10 scores for each model, along with a box plot highlighting the lower and upper quartiles, and "whiskers" showing the extent of the scores (thanks to Nevin Yilmaz for suggesting this visualization). Note that the `boxplot()` function detects outliers (called "fliers") and does not include them within the whiskers. Specifically, if the lower quartile is $Q_1$ and the upper quartile is $Q_3$, then the interquartile range $IQR = Q_3 - Q_1$ (this is the box's height), and any score lower than $Q_1 - 1.5 \times IQR$ is a flier, and so is any score greater than $Q3 + 1.5 \times IQR$. # In[126]: plt.figure(figsize=(8, 4)) plt.plot([1]*10, svm_scores, ".") plt.plot([2]*10, forest_scores, ".") plt.boxplot([svm_scores, forest_scores], labels=("SVM","Random Forest")) plt.ylabel("Accuracy", fontsize=14) plt.show() # To improve this result further, you could: # * Compare many more models and tune hyperparameters using cross validation and grid search, # * Do more feature engineering, for example: # * replace **SibSp** and **Parch** with their sum, # * try to identify parts of names that correlate well with the **Survived** attribute (e.g. if the name contains "Countess", then survival seems more likely), # * try to convert numerical attributes to categorical attributes: for example, different age groups had very different survival rates (see below), so it may help to create an age bucket category and use it instead of the age. Similarly, it may be useful to have a special category for people traveling alone since only 30% of them survived (see below). # In[127]: train_data["AgeBucket"] = train_data["Age"] // 15 * 15 train_data[["AgeBucket", "Survived"]].groupby(['AgeBucket']).mean() # In[128]: train_data["RelativesOnboard"] = train_data["SibSp"] + train_data["Parch"] train_data[["RelativesOnboard", "Survived"]].groupby(['RelativesOnboard']).mean() # ## 4. Spam classifier # First, let's fetch the data: # In[129]: import os import tarfile import urllib.request DOWNLOAD_ROOT = "http://spamassassin.apache.org/old/publiccorpus/" HAM_URL = DOWNLOAD_ROOT + "20030228_easy_ham.tar.bz2" SPAM_URL = DOWNLOAD_ROOT + "20030228_spam.tar.bz2" SPAM_PATH = os.path.join("datasets", "spam") def fetch_spam_data(spam_url=SPAM_URL, spam_path=SPAM_PATH): if not os.path.isdir(spam_path): os.makedirs(spam_path) for filename, url in (("ham.tar.bz2", HAM_URL), ("spam.tar.bz2", SPAM_URL)): path = os.path.join(spam_path, filename) if not os.path.isfile(path): urllib.request.urlretrieve(url, path) tar_bz2_file = tarfile.open(path) tar_bz2_file.extractall(path=SPAM_PATH) tar_bz2_file.close() # In[130]: fetch_spam_data() # Next, let's load all the emails: # In[131]: HAM_DIR = os.path.join(SPAM_PATH, "easy_ham") SPAM_DIR = os.path.join(SPAM_PATH, "spam") ham_filenames = [name for name in sorted(os.listdir(HAM_DIR)) if len(name) > 20] spam_filenames = [name for name in sorted(os.listdir(SPAM_DIR)) if len(name) > 20] # In[132]: len(ham_filenames) # In[133]: len(spam_filenames) # We can use Python's `email` module to parse these emails (this handles headers, encoding, and so on): # In[134]: import email import email.policy def load_email(is_spam, filename, spam_path=SPAM_PATH): directory = "spam" if is_spam else "easy_ham" with open(os.path.join(spam_path, directory, filename), "rb") as f: return email.parser.BytesParser(policy=email.policy.default).parse(f) # In[135]: ham_emails = [load_email(is_spam=False, filename=name) for name in ham_filenames] spam_emails = [load_email(is_spam=True, filename=name) for name in spam_filenames] # Let's look at one example of ham and one example of spam, to get a feel of what the data looks like: # In[136]: print(ham_emails[1].get_content().strip()) # In[137]: print(spam_emails[6].get_content().strip()) # Some emails are actually multipart, with images and attachments (which can have their own attachments). Let's look at the various types of structures we have: # In[138]: def get_email_structure(email): if isinstance(email, str): return email payload = email.get_payload() if isinstance(payload, list): return "multipart({})".format(", ".join([ get_email_structure(sub_email) for sub_email in payload ])) else: return email.get_content_type() # In[139]: from collections import Counter def structures_counter(emails): structures = Counter() for email in emails: structure = get_email_structure(email) structures[structure] += 1 return structures # In[140]: structures_counter(ham_emails).most_common() # In[141]: structures_counter(spam_emails).most_common() # It seems that the ham emails are more often plain text, while spam has quite a lot of HTML. Moreover, quite a few ham emails are signed using PGP, while no spam is. In short, it seems that the email structure is useful information to have. # Now let's take a look at the email headers: # In[142]: for header, value in spam_emails[0].items(): print(header,":",value) # There's probably a lot of useful information in there, such as the sender's email address (12a1mailbot1@web.de looks fishy), but we will just focus on the `Subject` header: # In[143]: spam_emails[0]["Subject"] # Okay, before we learn too much about the data, let's not forget to split it into a training set and a test set: # In[144]: import numpy as np from sklearn.model_selection import train_test_split X = np.array(ham_emails + spam_emails) y = np.array([0] * len(ham_emails) + [1] * len(spam_emails)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Okay, let's start writing the preprocessing functions. First, we will need a function to convert HTML to plain text. Arguably the best way to do this would be to use the great [BeautifulSoup](https://www.crummy.com/software/BeautifulSoup/) library, but I would like to avoid adding another dependency to this project, so let's hack a quick & dirty solution using regular expressions (at the risk of [un̨ho͞ly radiańcé destro҉ying all enli̍̈́̂̈́ghtenment](https://stackoverflow.com/a/1732454/38626)). The following function first drops the `` section, then converts all `` tags to the word HYPERLINK, then it gets rid of all HTML tags, leaving only the plain text. For readability, it also replaces multiple newlines with single newlines, and finally it unescapes html entities (such as `>` or ` `): # In[145]: import re from html import unescape def html_to_plain_text(html): text = re.sub('.*?', '', html, flags=re.M | re.S | re.I) text = re.sub('', ' HYPERLINK ', text, flags=re.M | re.S | re.I) text = re.sub('<.*?>', '', text, flags=re.M | re.S) text = re.sub(r'(\s*\n)+', '\n', text, flags=re.M | re.S) return unescape(text) # Let's see if it works. This is HTML spam: # In[146]: html_spam_emails = [email for email in X_train[y_train==1] if get_email_structure(email) == "text/html"] sample_html_spam = html_spam_emails[7] print(sample_html_spam.get_content().strip()[:1000], "...") # And this is the resulting plain text: # In[147]: print(html_to_plain_text(sample_html_spam.get_content())[:1000], "...") # Great! Now let's write a function that takes an email as input and returns its content as plain text, whatever its format is: # In[148]: def email_to_text(email): html = None for part in email.walk(): ctype = part.get_content_type() if not ctype in ("text/plain", "text/html"): continue try: content = part.get_content() except: # in case of encoding issues content = str(part.get_payload()) if ctype == "text/plain": return content else: html = content if html: return html_to_plain_text(html) # In[149]: print(email_to_text(sample_html_spam)[:100], "...") # Let's throw in some stemming! For this to work, you need to install the Natural Language Toolkit ([NLTK](http://www.nltk.org/)). It's as simple as running the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the `--user` option): # # `$ pip3 install nltk` # In[150]: try: import nltk stemmer = nltk.PorterStemmer() for word in ("Computations", "Computation", "Computing", "Computed", "Compute", "Compulsive"): print(word, "=>", stemmer.stem(word)) except ImportError: print("Error: stemming requires the NLTK module.") stemmer = None # We will also need a way to replace URLs with the word "URL". For this, we could use hard core [regular expressions](https://mathiasbynens.be/demo/url-regex) but we will just use the [urlextract](https://github.com/lipoja/URLExtract) library. You can install it with the following command (don't forget to activate your virtualenv first; if you don't have one, you will likely need administrator rights, or use the `--user` option): # # `$ pip3 install urlextract` # In[151]: try: import urlextract # may require an Internet connection to download root domain names url_extractor = urlextract.URLExtract() print(url_extractor.find_urls("Will it detect github.com and https://youtu.be/7Pq-S557XQU?t=3m32s")) except ImportError: print("Error: replacing URLs requires the urlextract module.") url_extractor = None # We are ready to put all this together into a transformer that we will use to convert emails to word counters. Note that we split sentences into words using Python's `split()` method, which uses whitespaces for word boundaries. This works for many written languages, but not all. For example, Chinese and Japanese scripts generally don't use spaces between words, and Vietnamese often uses spaces even between syllables. It's okay in this exercise, because the dataset is (mostly) in English. # In[152]: from sklearn.base import BaseEstimator, TransformerMixin class EmailToWordCounterTransformer(BaseEstimator, TransformerMixin): def __init__(self, strip_headers=True, lower_case=True, remove_punctuation=True, replace_urls=True, replace_numbers=True, stemming=True): self.strip_headers = strip_headers self.lower_case = lower_case self.remove_punctuation = remove_punctuation self.replace_urls = replace_urls self.replace_numbers = replace_numbers self.stemming = stemming def fit(self, X, y=None): return self def transform(self, X, y=None): X_transformed = [] for email in X: text = email_to_text(email) or "" if self.lower_case: text = text.lower() if self.replace_urls and url_extractor is not None: urls = list(set(url_extractor.find_urls(text))) urls.sort(key=lambda url: len(url), reverse=True) for url in urls: text = text.replace(url, " URL ") if self.replace_numbers: text = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', 'NUMBER', text) if self.remove_punctuation: text = re.sub(r'\W+', ' ', text, flags=re.M) word_counts = Counter(text.split()) if self.stemming and stemmer is not None: stemmed_word_counts = Counter() for word, count in word_counts.items(): stemmed_word = stemmer.stem(word) stemmed_word_counts[stemmed_word] += count word_counts = stemmed_word_counts X_transformed.append(word_counts) return np.array(X_transformed) # Let's try this transformer on a few emails: # In[153]: X_few = X_train[:3] X_few_wordcounts = EmailToWordCounterTransformer().fit_transform(X_few) X_few_wordcounts # This looks about right! # Now we have the word counts, and we need to convert them to vectors. For this, we will build another transformer whose `fit()` method will build the vocabulary (an ordered list of the most common words) and whose `transform()` method will use the vocabulary to convert word counts to vectors. The output is a sparse matrix. # In[154]: from scipy.sparse import csr_matrix class WordCounterToVectorTransformer(BaseEstimator, TransformerMixin): def __init__(self, vocabulary_size=1000): self.vocabulary_size = vocabulary_size def fit(self, X, y=None): total_count = Counter() for word_count in X: for word, count in word_count.items(): total_count[word] += min(count, 10) most_common = total_count.most_common()[:self.vocabulary_size] self.most_common_ = most_common self.vocabulary_ = {word: index + 1 for index, (word, count) in enumerate(most_common)} return self def transform(self, X, y=None): rows = [] cols = [] data = [] for row, word_count in enumerate(X): for word, count in word_count.items(): rows.append(row) cols.append(self.vocabulary_.get(word, 0)) data.append(count) return csr_matrix((data, (rows, cols)), shape=(len(X), self.vocabulary_size + 1)) # In[155]: vocab_transformer = WordCounterToVectorTransformer(vocabulary_size=10) X_few_vectors = vocab_transformer.fit_transform(X_few_wordcounts) X_few_vectors # In[156]: X_few_vectors.toarray() # What does this matrix mean? Well, the 64 in the third row, first column, means that the third email contains 64 words that are not part of the vocabulary. The 1 next to it means that the first word in the vocabulary is present once in this email. The 2 next to it means that the second word is present twice, and so on. You can look at the vocabulary to know which words we are talking about. The first word is "of", the second word is "and", etc. # In[157]: vocab_transformer.vocabulary_ # We are now ready to train our first spam classifier! Let's transform the whole dataset: # In[158]: from sklearn.pipeline import Pipeline preprocess_pipeline = Pipeline([ ("email_to_wordcount", EmailToWordCounterTransformer()), ("wordcount_to_vector", WordCounterToVectorTransformer()), ]) X_train_transformed = preprocess_pipeline.fit_transform(X_train) # In[159]: from sklearn.linear_model import LogisticRegression from sklearn.model_selection import cross_val_score log_clf = LogisticRegression(solver="liblinear", random_state=42) score = cross_val_score(log_clf, X_train_transformed, y_train, cv=3, verbose=3) score.mean() # Over 98.7%, not bad for a first try! :) However, remember that we are using the "easy" dataset. You can try with the harder datasets, the results won't be so amazing. You would have to try multiple models, select the best ones and fine-tune them using cross-validation, and so on. # # But you get the picture, so let's stop now, and just print out the precision/recall we get on the test set: # In[160]: from sklearn.metrics import precision_score, recall_score X_test_transformed = preprocess_pipeline.transform(X_test) log_clf = LogisticRegression(solver="liblinear", random_state=42) log_clf.fit(X_train_transformed, y_train) y_pred = log_clf.predict(X_test_transformed) print("Precision: {:.2f}%".format(100 * precision_score(y_test, y_pred))) print("Recall: {:.2f}%".format(100 * recall_score(y_test, y_pred))) # In[ ]: