#!/usr/bin/env python # coding: utf-8 # # Comparison of Batch, Mini-Batch and Stochastic Gradient Descent # This notebook displays an animation comparing Batch, Mini-Batch and Stochastic Gradient Descent (introduced in Chapter 4). Thanks to [Daniel Ingram](https://github.com/daniel-s-ingram) who contributed this notebook. # # # #
# Open In Colab # # #
# In[1]: import matplotlib import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation matplotlib.rc('animation', html='jshtml') # In[2]: import numpy as np m = 100 X = 2 * np.random.rand(m, 1) X_b = np.c_[np.ones((m, 1)), X] y = 4 + 3 * X + np.random.rand(m, 1) # In[3]: def batch_gradient_descent(): n_iterations = 1000 learning_rate = 0.05 thetas = np.random.randn(2, 1) thetas_path = [thetas] for i in range(n_iterations): gradients = 2 * X_b.T @ (X_b @ thetas - y) / m thetas = thetas - learning_rate * gradients thetas_path.append(thetas) return thetas_path # In[4]: def stochastic_gradient_descent(): n_epochs = 50 t0, t1 = 5, 50 thetas = np.random.randn(2, 1) thetas_path = [thetas] for epoch in range(n_epochs): for i in range(m): random_index = np.random.randint(m) xi = X_b[random_index:random_index+1] yi = y[random_index:random_index+1] gradients = 2 * xi.T @ (xi @ thetas - yi) eta = learning_schedule(epoch * m + i, t0, t1) thetas = thetas - eta * gradients thetas_path.append(thetas) return thetas_path # In[5]: def mini_batch_gradient_descent(): n_iterations = 50 minibatch_size = 20 t0, t1 = 200, 1000 thetas = np.random.randn(2, 1) thetas_path = [thetas] t = 0 for epoch in range(n_iterations): shuffled_indices = np.random.permutation(m) X_b_shuffled = X_b[shuffled_indices] y_shuffled = y[shuffled_indices] for i in range(0, m, minibatch_size): t += 1 xi = X_b_shuffled[i : i + minibatch_size] yi = y_shuffled[i : i + minibatch_size] gradients = 2 * xi.T @ (xi @ thetas - yi) / minibatch_size eta = learning_schedule(t, t0, t1) thetas = thetas - eta * gradients thetas_path.append(thetas) return thetas_path # In[6]: def compute_mse(theta): return ((X_b @ theta - y) ** 2).sum() / m # In[7]: def learning_schedule(t, t0, t1): return t0 / (t + t1) # In[8]: theta0, theta1 = np.meshgrid(np.arange(0, 5, 0.1), np.arange(0, 5, 0.1)) r, c = theta0.shape cost_map = np.array([[0 for _ in range(c)] for _ in range(r)]) for i in range(r): for j in range(c): theta = np.array([theta0[i,j], theta1[i,j]]) cost_map[i,j] = compute_mse(theta) # In[9]: exact_solution = np.linalg.inv(X_b.T @ X_b) @ X_b.T @ y bgd_thetas = np.array(batch_gradient_descent()) sgd_thetas = np.array(stochastic_gradient_descent()) mbgd_thetas = np.array(mini_batch_gradient_descent()) # In[10]: bgd_len = len(bgd_thetas) sgd_len = len(sgd_thetas) mbgd_len = len(mbgd_thetas) n_iter = min(bgd_len, sgd_len, mbgd_len) # In[11]: fig = plt.figure(figsize=(10, 5)) data_ax = fig.add_subplot(121) cost_ax = fig.add_subplot(122) data_ax.plot(X, y, 'k.') cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') cost_ax.pcolor(theta0, theta1, cost_map, shading='auto') i = -1 [bgd_data_plot] = data_ax.plot(X, X_b @ bgd_thetas[i,:], 'r-') [bgd_cost_plot] = cost_ax.plot(bgd_thetas[:i,0], bgd_thetas[:i,1], 'r--') [sgd_data_plot] = data_ax.plot(X, X_b @ sgd_thetas[i,:], 'g-') [sgd_cost_plot] = cost_ax.plot(sgd_thetas[:i,0], sgd_thetas[:i,1], 'g--') [mbgd_data_plot] = data_ax.plot(X, X_b @ mbgd_thetas[i,:], 'b-') [mbgd_cost_plot] = cost_ax.plot(mbgd_thetas[:i,0], mbgd_thetas[:i,1], 'b--') data_ax.set_xlim([0, 2]) data_ax.set_ylim([0, 15]) cost_ax.set_xlim([3, 5]) cost_ax.set_ylim([2, 5]) data_ax.set_xlabel(r'$x_1$') data_ax.set_ylabel(r'$y$', rotation=0) cost_ax.set_xlabel(r'$\theta_0$') cost_ax.set_ylabel(r'$\theta_1$') data_ax.legend(('Data', 'BGD', 'SGD', 'MBGD'), loc="upper left") cost_ax.legend(('Normal Equation', 'BGD', 'SGD', 'MBGD'), loc="upper left") cost_ax.plot(exact_solution[0,0], exact_solution[1,0], 'y*') cost_img = cost_ax.pcolor(theta0, theta1, cost_map, shading='auto') fig.colorbar(cost_img) plt.show() # In[12]: def animate(i): bgd_data_plot.set_data(X, X_b @ bgd_thetas[i,:]) bgd_cost_plot.set_data(bgd_thetas[:i,0], bgd_thetas[:i,1]) sgd_data_plot.set_data(X, X_b @ sgd_thetas[i,:]) sgd_cost_plot.set_data(sgd_thetas[:i,0], sgd_thetas[:i,1]) mbgd_data_plot.set_data(X, X_b @ mbgd_thetas[i,:]) mbgd_cost_plot.set_data(mbgd_thetas[:i,0], mbgd_thetas[:i,1]) # In[13]: FuncAnimation(fig, animate, frames=n_iter // 3) # In[ ]: