#!/usr/bin/env python # coding: utf-8 # In[1]: import fiona import geopandas as gpd import rasterio as rio from rasterio.plot import show as rioshow from rasterio import transform from shapely.geometry import Point from shapely.geometry import Polygon from shapely.geometry import MultiPolygon from shapely.geometry import LineString from shapely.geometry import box from shapely import wkt from pyproj import Transformer import matplotlib.pyplot as plt import numpy as np import os import requests from dotenv import load_dotenv np.set_printoptions(suppress=True) # In[2]: # Enable KML support which is disabled by default fiona.drvsupport.supported_drivers['libkml'] = 'rw' fiona.drvsupport.supported_drivers['LIBKML'] = 'rw' # ## Variables # In[3]: # Load environmaent variable load_dotenv() # In[4]: geoCRS = 4326 # for output GeoJSON files (lon/lat) projCRS = 3857 # for calculations (meters) OPENTOPO_TOKEN = os.getenv('OPENTOPO_TOKEN') # ## Initial Data Analysis # ### Area of Interest # In[5]: # Store file path kreminna_aoi_file = os.path.join('assets','geom','kreminna.kml') # In[6]: # Read and display the area of interest kreminna_aoi = gpd.read_file(kreminna_aoi_file).to_crs(projCRS) print(kreminna_aoi.crs) kreminna_aoi # In[7]: kreminna_aoi.iloc[0,-1] # In[8]: # Remove z coordinate kreminna_aoi['geometry'] = kreminna_aoi['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2))) kreminna_aoi # In[9]: # Remove unnecessary columns and rename one kreminna_aoi = kreminna_aoi[['Name','geometry']].rename(columns={'Name':'name'}) # In[10]: # Export area of interest kreminna_aoi.to_crs(geoCRS).to_file('kreminna-clipped-aoi.geojson', driver='GeoJSON') # ### Digital Elevation Model (DEM) # In[11]: # Box coordinates: west, south, east, north # kreminna_aoi.bounds # In[12]: # Download Digital Elevation Model for the area (free API token at https://portal.opentopography.org/ is required) # w, s, e, n = kreminna_aoi.to_crs(geoCRS).bounds.minx, kreminna_aoi.bounds.miny, kreminna_aoi.bounds.maxx, kreminna_aoi.bounds.maxy # url = "https://portal.opentopography.org/API/globaldem" # params = { # 'demtype': 'SRTMGL1', # 'south': s, # 'north': n, # 'west': w, # 'east': e, # 'outputFormat': 'GTiff', # 'API_Key': OPENTOPO_TOKEN # } # response = requests.get(url, params=params) # with open ('kreminna-DEM.tif', 'wb') as f: # f.write(response.content) # In[13]: # Store file path kreminna_dem_file = 'kreminna-DEM.tif' # In[14]: # Read file contents with rio.open(kreminna_dem_file) as f: print(f.meta) kreminna_dem_array = f.read(1) # number of band (single here anyways) kreminna_dem_transform = f.transform kreminna_dem_crs = f.crs # In[15]: # Show dem and contours rioshow(kreminna_dem_array, cmap='plasma', title='DEM'), rioshow(kreminna_dem_array, cmap='plasma', title='DEM Contour', contour=True) # #### DEM to Contour in QGIS (+Smoothing) # # The contour will be used later for the final visualization. # # After importing the downloaded DEM the contours were modified. With the help of __"Generalizer"__ tool, most small objects present on the contour were removed (__"Remove small objects"__ algorithm). After that, the __"Boyle's Forward-Looking Algorithm"__ was used for line smoothing. # Before
# w
# # After
# w
# In[16]: # Store file path kreminna_contour_file = os.path.join('assets','elevation','kreminna-elevation-contour.geojson') # In[17]: # Read and display data kreminna_contour = gpd.read_file(kreminna_contour_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(kreminna_contour.crs) kreminna_contour.plot() # In[18]: kreminna_contour.head() # In[19]: # Remove unnecessary columns and rename one kreminna_contour = kreminna_contour[['ELEV','geometry']].rename(columns={'ELEV':'elevation'}) # In[20]: # Check contours clip kreminna_contour.clip(kreminna_aoi).plot() # In[21]: # Export clipped contour kreminna_contour.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-contours.geojson', driver='GeoJSON') # ### Occupied Area # Some data cleaning and export as GeoJSON conducted using __[geojson.io](https://geojson.io/#map=2/0/20)__ # # __Before__: single file with different geometries # # w
# # __After__: 2 separate files, for areas (polygons) and fortifications (lines) # # oafl # In[22]: # Store file path warzone_output = os.path.join('assets','osint','occupied-areas-160624.geojson') # In[23]: # Read and display data warzone_areas = gpd.read_file(warzone_output).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_areas.crs) warzone_areas.plot() # In[24]: warzone_areas.shape # In[25]: warzone_areas # In[26]: # Remove z coordinate warzone_areas['geometry'] = warzone_areas['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2))) warzone_areas.head(1) # In[27]: # Combine geometries warzone_areas_d = gpd.geoseries.GeoSeries([geom for geom in warzone_areas.unary_union.geoms]) warzone_areas_d # In[28]: # Merge all polygons into a single multipolygon warzone_area = warzone_areas.dissolve().replace('Luhansk Axis', 'occupied') warzone_area # In[29]: # Display all occupied area warzone_area.plot() # In[30]: # Display occupied area of interest warzone_area.clip(kreminna_aoi).plot(color='r') # In[31]: # Export clipped occupied area warzone_area.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-occupied.geojson', driver='GeoJSON') # ### Trenches / Fortifications # In[32]: # Store file path warzone_fortif_file= os.path.join('assets','osint','fortification-lines-160624.geojson') # In[33]: # Read and display data warzone_fortif = gpd.read_file(warzone_fortif_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_fortif.crs) warzone_fortif.plot() # In[34]: warzone_fortif.shape # In[35]: warzone_fortif # In[36]: # Check geometry types warzone_fortif.geom_type.value_counts() # In[37]: # Remove unnecessary columns warzone_fortif = warzone_fortif.drop(columns=['stroke','stroke-width','stroke-opacity','styleUrl']) # In[38]: # Check number of rows in 'unpacked' collections of geometries warzone_fortif.explode(index_parts=False).shape # In[39]: # Store 'unpacked' geometries warzone_fortif_decomposed = warzone_fortif.explode(ignore_index=True) warzone_fortif_decomposed.plot() # In[40]: warzone_fortif_decomposed.tail() # In[41]: # Remove z coordianate warzone_fortif_decomposed['geometry'] = warzone_fortif_decomposed['geometry'].apply(lambda g: wkt.loads(wkt.dumps(g, output_dimension=2))) warzone_fortif_decomposed.head(1) # In[42]: # Check fortification types warzone_fortif_decomposed['name'].value_counts() # In[43]: # Keep the fortification type name only warzone_fortif_decomposed['name'] = warzone_fortif_decomposed['name'].apply(lambda x: x.split()[0]) # In[44]: # Remove use of plural and singular forms of same word warzone_fortif_decomposed['name'] = warzone_fortif_decomposed['name'].replace('Tankditch','Tankditches') # In[45]: # Plot all available fortifications data fig, ax = plt.subplots(figsize=(6,8)) warzone_fortif_decomposed.plot(ax=ax, column='name', categorical=True, legend=True, legend_kwds={'loc':'center left', 'frameon':False}) plt.axis('off'); # In[46]: # Plot fortifications data for the area of interest warzone_fortif_decomposed.clip(kreminna_aoi).plot(column='name', categorical=True, legend=True, legend_kwds={'frameon':False, 'loc':(1,0.5)}) plt.axis('off'); # In[47]: # Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326 transformer = Transformer.from_crs(projCRS, geoCRS) # In[48]: # Convert the coordinates x, y = transformer.transform(warzone_fortif_decomposed.centroid.x, warzone_fortif_decomposed.centroid.y) # In[49]: print('lat:', x[0]) print('lon:', y[0]) # In[50]: # Extract lat and lon into new columns warzone_fortif_decomposed['lat'] = x warzone_fortif_decomposed['lon'] = y # In[51]: warzone_fortif_decomposed.head() # In[52]: # Check wsg84 coordinates warzone_fortif_decomposed.to_crs(geoCRS).head(1) # In[53]: # Export clipped russian positions warzone_fortif_decomposed.clip(kreminna_aoi, keep_geom_type=True).to_crs(geoCRS).to_file('kreminna-clipped-fortification-lines.geojson', driver='GeoJSON') # ### Overpass Turbo Data # Overpass Turbo uses the following format to define a bbox: __miny, minx, maxy, maxx__ # In[54]: # Display area of interest bbox coordinates for overpass turbo query kreminna_aoi.to_crs(geoCRS).bounds # Therefore, bbox for current area of interest is: __(48.758341, 37.909804, 49.211731, 38.55444)__ # *** # #### Roads # __Overpass Turbo:__ # # ``` # [out:json][timeout:60]; # # way["highway"](48.758341,37.909804,49.211731,38.55444); # # out geom; # ``` # In[55]: # Store file path warzone_roads_file= os.path.join('assets','osint','kreminna-roads.geojson') # In[56]: # Read and display data warzone_roads = gpd.read_file(warzone_roads_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_roads.crs) warzone_roads.plot() # In[57]: warzone_roads.columns # In[58]: warzone_roads.iloc[0,:].values # In[59]: warzone_roads['highway'].value_counts(dropna=False) # In[60]: warzone_roads['highway'].isna().any() # In[61]: # Rename 'highway' column to a more generalized 'road' warzone_roads = warzone_roads.rename(columns={'highway':'road'}) # In[62]: # Replace None values in 'road' column with 'road' as their new value warzone_roads['road'] = warzone_roads['road'].fillna('road') # In[63]: # Filter needed columns warzone_roads = warzone_roads.loc[:,['id','road','geometry']] warzone_roads.head(1) # In[64]: warzone_roads.isna().any() # In[65]: # Unpivot a GeoDataFrame warzone_roads_unpivot = warzone_roads.melt( id_vars=['id','geometry'], value_vars='road', value_name='sub_category', var_name='category', ignore_index=True ) warzone_roads_unpivot.head() # In[66]: warzone_roads_unpivot.clip(kreminna_aoi).plot() # In[67]: # Export clipped roads warzone_roads_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-roads.geojson', driver='GeoJSON') # #### Towns, villages, etc # # __Overpass Turbo:__ # # ``` # [out:json][timeout:60]; # # node["place"]["place"!~"square"](48.758341,37.909804,49.211731,38.55444); # # out geom; # # ``` # In[68]: # Store file path warzone_places_file = os.path.join('assets','osint','kreminna-places.geojson') # In[69]: # Read and display data warzone_places = gpd.read_file(warzone_places_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_places.crs) warzone_places.plot() # In[70]: warzone_places.columns # In[71]: warzone_places.iloc[0,:].values # In[72]: warzone_places['name'].isna().value_counts() # In[73]: warzone_places['name:en'].isna().value_counts() # In[74]: # Filter needed columns warzone_places_filtered = warzone_places.loc[:,['id','name:en','name','place','geometry']] warzone_places_filtered.head(1) # In[75]: # Check which english place translations are missing warzone_places_filtered[warzone_places_filtered['name:en'].isna()] # In[76]: # Fill missing place names warzone_places_filtered.loc[38,'name:en'] = 'Vedmezhe' warzone_places_filtered.loc[77,'name:en'] = 'Matroska' warzone_places_filtered.loc[78,'name:en'] = 'Pivdenna' warzone_places_filtered.loc[79,'name:en'] = 'Chykhyrove' warzone_places_filtered[warzone_places_filtered['name:en'].isna()] # In[77]: warzone_places_filtered['place'].value_counts(dropna=False) # In[78]: # Replace None values in 'place' column with 'place' as their new value warzone_places_filtered['place'] = warzone_places_filtered['place'].fillna('place') # In[79]: # Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326 transformer = Transformer.from_crs(projCRS, geoCRS) # Convert the coordinates x, y = transformer.transform(warzone_places_filtered.centroid.x, warzone_places_filtered.centroid.y) # In[80]: # Extract lat and lon into new columns warzone_places_filtered['lat'] = x warzone_places_filtered['lon'] = y # In[81]: warzone_places_filtered.isna().any() # In[82]: # Unpivot GeoDataFrame warzone_places_unpivot = warzone_places_filtered.melt( id_vars=['id','name:en','name','lon','lat','geometry'], value_vars='place', value_name='sub_category', var_name='category', ignore_index=True ) warzone_places_unpivot.sample(10) # In[83]: warzone_places_unpivot.clip(kreminna_aoi).plot() # In[84]: # Export clipped places warzone_places_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-places.geojson', driver='GeoJSON') # #### Buildings # # ``` # [out:json][timeout:60]; # # nwr["building"](48.758341,37.909804,49.211731,38.55444); # # out geom; # ``` # In[85]: # Store file path warzone_buildings_file = os.path.join('assets','osint','kreminna-buildings.geojson') # In[86]: # Read and display data warzone_buildings = gpd.read_file(warzone_buildings_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_buildings.crs) warzone_buildings.plot() # In[87]: # Check geometry types warzone_buildings.geom_type.value_counts(dropna=False) # In[88]: # Store point geometries instead of polygons warzone_buildings['geometry'] = warzone_buildings.centroid warzone_buildings.geom_type.value_counts(dropna=False) # In[89]: warzone_buildings.columns # In[90]: warzone_buildings.iloc[0,:].values # In[91]: warzone_buildings.isna().any() # In[92]: # Filter needed columns warzone_buildings_filtered = warzone_buildings.loc[:,['id','geometry']] warzone_buildings_filtered.head(1) # In[93]: # Create a transformer to convert coordinates from EPSG:3857 to EPSG:4326 transformer = Transformer.from_crs(projCRS, geoCRS) # Convert the coordinates x, y = transformer.transform(warzone_buildings_filtered.centroid.x, warzone_buildings_filtered.centroid.y) # Extract lat and lon into new columns warzone_buildings_filtered['lat'] = x warzone_buildings_filtered['lon'] = y # In[94]: warzone_buildings_filtered.isna().any() # In[95]: warzone_buildings_filtered.clip(kreminna_aoi).plot() # In[96]: # Export clipped ponds warzone_buildings_filtered.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-buildings.geojson', driver='GeoJSON') # #### Lakes, ponds, etc # # __Overpass Turbo:__ # # ``` # [out:json][timeout:60]; # # area["natural"="water"]["water"!~"river"](48.758341,37.909804,49.211731,38.55444); # # out geom; # # ``` # In[97]: # Store file path warzone_ponds_file = os.path.join('assets','osint','kreminna-ponds.geojson') # In[98]: # Read and display data warzone_ponds = gpd.read_file(warzone_ponds_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_ponds.crs) warzone_ponds.plot() # In[99]: warzone_ponds.columns # In[100]: warzone_ponds.iloc[0,:].values # In[101]: warzone_ponds.isna().any() # In[102]: warzone_ponds['water'].value_counts(dropna=False) # In[103]: # Replace None values in 'water' column with 'water' as their new value warzone_ponds['water'] = warzone_ponds['water'].fillna('water') # In[104]: # Filter needed columns warzone_ponds = warzone_ponds.loc[:,['id', '@id','water','geometry']] warzone_ponds.head(1) # In[105]: warzone_ponds.isna().any() # In[106]: # Unpivot GeoDataFrame warzone_ponds_unpivot = warzone_ponds.melt( id_vars=['id','geometry'], value_vars='water', value_name='sub_category', var_name='category', ignore_index=True ) warzone_ponds_unpivot.sample(10) # In[107]: warzone_ponds_unpivot.clip(kreminna_aoi).plot() # In[108]: # Export clipped ponds warzone_ponds_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-ponds.geojson', driver='GeoJSON') # #### Wetlands, swamps, etc # # __Overpass Turbo:__ # # ``` # [out:json][timeout:60]; # # area["natural"="wetland"](48.758341,37.909804,49.211731,38.55444); # # out geom; # ``` # In[109]: # Store file path warzone_wetlands_file = os.path.join('assets','osint','kreminna-swamps.geojson') # In[110]: # Read and display data warzone_wetlands = gpd.read_file(warzone_wetlands_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_wetlands.crs) warzone_wetlands.plot() # In[111]: warzone_wetlands.columns # In[112]: warzone_wetlands.iloc[0,:].values # In[113]: warzone_wetlands.isna().any() # In[114]: warzone_wetlands.loc[:,'wetland'].value_counts(dropna=False) # In[115]: # Replace None values in 'wetland' column with 'wetland' as their new value warzone_wetlands['wetland'] = warzone_wetlands['wetland'].fillna('wetland') # In[116]: # Filter needed columns warzone_wetlands = warzone_wetlands.loc[:,['id', '@id','wetland','geometry']] warzone_wetlands.head(1) # In[117]: warzone_wetlands.isna().any() # In[118]: # Unpivot GeoDataFrame warzone_wetlands_unpivot = warzone_wetlands.melt( id_vars=['id', '@id','geometry'], value_vars='wetland', value_name='sub_category', var_name='category', ignore_index=True ) warzone_wetlands_unpivot.head(10) # In[119]: warzone_wetlands_unpivot.clip(kreminna_aoi).plot() # In[120]: # Export clipped wetlands warzone_wetlands_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-wetlands.geojson', driver='GeoJSON') # #### Rivers, streams # # __Overpass Turbo:__ # # ``` # [out:json][timeout:60]; # # way["waterway"](48.758341,37.909804,49.211731,38.55444); # # out geom; # # ``` # In[121]: # Store file path warzone_rivers_file = os.path.join('assets','osint','kreminna-rivers.geojson') # In[122]: # Read and display data warzone_rivers = gpd.read_file(warzone_rivers_file).to_crs(projCRS).dropna(how='all').reset_index(drop=True) print(warzone_rivers.crs) warzone_rivers.plot() # In[123]: warzone_rivers.columns # In[124]: warzone_rivers.iloc[0,:].values # In[125]: warzone_rivers.isna().any() # In[126]: warzone_rivers.loc[:,'waterway'].value_counts(dropna=False) # In[127]: warzone_rivers.loc[:,'width'].value_counts(dropna=False) # In[128]: # Replace None values in 'waterway' column with 'waterway' as their new value warzone_rivers['waterway'] = warzone_rivers['waterway'].fillna('waterway') # In[129]: # Filter needed columns warzone_rivers = warzone_rivers.loc[:,['id', '@id','waterway','geometry']] warzone_rivers.head(1) # In[130]: # Unpivot GeoDataFrame warzone_rivers_unpivot = warzone_rivers.melt( id_vars=['id', '@id','geometry'], value_vars='waterway', value_name='sub_category', var_name='category', ignore_index=True ) warzone_rivers_unpivot.sample(10) # In[131]: warzone_rivers_unpivot.clip(kreminna_aoi).plot() # In[132]: # Export clipped rivers warzone_rivers_unpivot.clip(kreminna_aoi).to_crs(geoCRS).to_file('kreminna-clipped-rivers.geojson', driver='GeoJSON')