#!/usr/bin/env python # coding: utf-8 # # Appendix C, Figure 7. Bistability in the simulations with the original rotation rate # # [Skip code and jump to the figure](#Show-the-figure) # In[1]: import warnings warnings.filterwarnings("ignore") from dataclasses import dataclass, field from functools import partial from pathlib import Path import cmocean import geovista as gv import iris import matplotlib.colors as mcol import matplotlib.pyplot as plt import numpy as np import pyvista as pv from aeolus.calc import time_mean from aeolus.coord import ensure_bounds, isel from aeolus.io import load_data from aeolus.lfric import ( add_um_height_coord, fix_time_coord, load_lfric_raw, ugrid_spatial, ugrid_spatial_mean, ) from aeolus.model import lfric from aeolus.plot import ( all_sim_file_label, capitalise, cube_minmeanmax_str, figsave, subplot_label_generator, tex2cf_units, ) from iris.experimental.geovista import cube_to_polydata from matplotlib.offsetbox import AnchoredText from tqdm.notebook import tqdm # PyVista display settings pv.global_theme.trame.server_proxy_enabled = True pv.set_jupyter_backend("trame") # Local modules # In[2]: import paths from common import DC, N_RES, SIMULATIONS_OLD, SPINUP_DAYS # Show all simulations, using instantaneous output # In[3]: show_sim = [*SIMULATIONS_OLD.keys()] time_prof = "inst_diag" # ## Load the data # First, load the raw instantaneous diagnostics # In[4]: dset = {} for sim_label in show_sim: dset[sim_label] = {} add_levs = partial( add_um_height_coord, path_to_levels_file=paths.vert / SIMULATIONS_OLD[sim_label].vert_lev, ) def _combi_callback(cube, field, filename): [ fix_time_coord(cube, field, filename), add_levs(cube, field, filename), ] fnames = sorted( paths.data_raw.glob( str( Path(SIMULATIONS_OLD[sim_label].work_name) / "*" / "run_lfric_atm_*" / f"lfric_{time_prof}.nc" ) ), key=lambda x: int(x.parent.parent.name), ) fnames = [ i for i in fnames if int(i.parent.parent.name) * SIMULATIONS_OLD[sim_label].days_per_job > SPINUP_DAYS ] fnames = fnames[-1] # Actually need only the last file dset[sim_label][time_prof] = load_lfric_raw( fnames, callback=_combi_callback, drop_coord=["forecast_reference_time"], ) # Also load time mean regridded data # In[5]: dset_tmr = {} for sim_label in show_sim: dset_tmr_averages = load_data( paths.data_proc / SIMULATIONS_OLD[sim_label].work_name / f"{SIMULATIONS_OLD[sim_label].work_name}_averages_*_time_mean_and_regr_{N_RES}.nc".lower() ) dset_tmr_inst_diag = load_data( paths.data_proc / SIMULATIONS_OLD[sim_label].work_name / f"{SIMULATIONS_OLD[sim_label].work_name}_inst_diag_*_time_mean_and_regr_{N_RES}.nc".lower() ) dset_tmr_averages = iris.cube.CubeList( cube for cube in dset_tmr_averages if cube.var_name not in [ "tot_col_w_kinetic_energy", "tot_col_uv_kinetic_energy", "cell_area", ] ) dset_tmr[sim_label] = dset_tmr_averages + dset_tmr_inst_diag # ## Make Plots # ### GeoVista Maps # In[6]: @dataclass class Diag: recipe: callable title: str units: str kw_plt: dict = field(default_factory=dict) DIAGS = { "toa_osr": Diag( recipe=lambda cl: cl.extract_cube(lfric.toa_osr), title="TOA OSR", units="$W$ $m^{-2}$", kw_plt=dict(cmap=cmocean.cm.gray, clim=[50, 400]), ), } # In[7]: diag_keys = ["toa_osr"] t_idx = -1 reduce_func = lambda cube: isel(cube, lfric.t, t_idx) gv_meshes = {} stats = {} for sim_label in show_sim: gv_meshes[sim_label] = {} # stats[sim_label] = {} for diag_key in diag_keys: cube2d = reduce_func(DIAGS[diag_key].recipe(dset[sim_label][time_prof])) cube2d.convert_units(tex2cf_units(DIAGS[diag_key].units)) gv_meshes[sim_label][diag_key] = cube_to_polydata(cube2d) # In[8]: savefig = True tilted = False add_grat = True diag_keys = ["toa_osr"] plotter = gv.GeoPlotter( window_size=[800 * len(show_sim), 900 * len(diag_keys)], shape=(len(diag_keys), len(show_sim)), border=False, ) zoom = 1.6 kw_grat = dict( lon_step=30, lat_step=30, mesh_args={"color": "grey"}, point_labels_args={ "font_size": 18, "shape_opacity": 0, "text_color": "grey", "shadow": True, }, ) letters = subplot_label_generator() for diag_idx, diag_key in enumerate(diag_keys): scalar_bar_args = { "title": f"{DIAGS[diag_key].title} / {DIAGS[diag_key].units}", "color": "k", "title_font_size": 28, "label_font_size": 36, "shadow": False, "n_labels": 2, "italic": False, "bold": False, "fmt": "%.1f", "font_family": "arial", "width": 0.2, "vertical": False, "position_x": 0.05, # 0.225 "position_y": 0.0, # 0.9 } for sim_idx, sim_label in enumerate(show_sim): color = SIMULATIONS_OLD[sim_label].kw_plt["color"] plotter.subplot(diag_idx, sim_idx) plotter.add_text( f"({next(letters)}) {SIMULATIONS_OLD[sim_label].title}", position="upper_left", font_size=24, color=color, ) plotter.add_mesh( gv_meshes[sim_label][diag_key], show_scalar_bar=True, # (sim_idx == diag_idx), zlevel=0, scalar_bar_args=scalar_bar_args, **DIAGS[diag_key].kw_plt, # annotations={10**e: f"$10^{{{e}}}$" for e in range(-4, 2)}, # annotations={ # stats[sim_label][diag_key][ # "mean" # ]: f"Mean: {stats[sim_label][diag_key]['mean']:.1f}", # }, ) kw_grat["point_labels_args"]["text_color"] = color kw_grat["mesh_args"]["color"] = color if add_grat: plotter.add_graticule(**kw_grat) extra_label = "__grat" else: extra_label = "" if tilted: plotter.camera.position = (6.5, 2.5, 2.5) extra_label += "_tilt_view" else: plotter.view_yz(negative=False) plotter.camera.zoom(zoom) plotter.show(jupyter_backend="static") if savefig: imgname = ( paths.figures / "drafts" / f"thai_hab1__{all_sim_file_label(show_sim)}__{time_prof}__{'_'.join(diag_keys)}{extra_label}.png" ) plotter.screenshot(imgname) plotter.close() # print(f"Size: {imgname.stat().st_size / 1024:.1f} KB") # ### Combine it with the regridded maps # Define coordinate points and labels # In[9]: lons = dset_tmr[sim_label].extract(DC.relax.x)[0].coord(lfric.x).points lats = dset_tmr[sim_label].extract(DC.relax.y)[0].coord(lfric.y).points coord_mappings = { "longitude": dict(ticks=np.arange(-180, 181, 60), units="degrees"), "latitude": dict(ticks=np.arange(-90, 91, 30), units="degrees"), } # Define diagnostics # In[10]: @dataclass class Diag: recipe: callable title: str units: str fmt: str kw_plt: dict = field(default_factory=dict) method: str = "contourf" prec_levels = [0.1, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64] prec_colors = cmocean.cm.rain(np.linspace(0, 1, len(prec_levels) - 1)) prec_cmap, prec_norm = mcol.from_levels_and_colors(prec_levels, prec_colors) DIAGS = { "t_sfc": Diag( recipe=lambda cl: cl.extract_cube(lfric.t_sfc), title="Surface Temperature", units="$K$", method="pcolormesh", kw_plt=dict( cmap=cmocean.cm.thermal, vmin=180, vmax=290, rasterized=True, ), fmt="auto", ), "tot_prec": Diag( recipe=lambda cl: precip_sum(cl, const=CONST, model=lfric), title="Total Precipitation", units="$mm$ $day^{-1}$", method="pcolormesh", kw_plt=dict( cmap=prec_cmap, norm=prec_norm, ), fmt="pretty", ), } # In[12]: diag_keys = ["t_sfc"] # , "tot_prec" plot_winds = ["t_sfc"] height_constraint = iris.Constraint(**{lfric.z: 8000}) plot_w_zm_day = [] fig = plt.figure(figsize=(8, 4), layout="constrained") subfigs = fig.subfigures( nrows=len(diag_keys) + 1, ncols=1, squeeze=False, height_ratios=[2 / 3, 1 / 3] )[:, 0] mosaic = [show_sim + ["cax"]] subfigs[0].suptitle( ( "Simulation with a rotation period of 6.1 days" "\n\nTOA Outgoing Shortwave Radiation [$W$ $m^{-2}$]" ), fontweight="bold", ) ax = subfigs[0].add_subplot(111) ax.imshow(plt.imread(imgname)) ax.axis("off") iletters = subplot_label_generator() [next(iletters) for _ in show_sim] # skip first four letters for diag_key, subfig in zip(diag_keys, subfigs[1:]): axd = subfig.subplot_mosaic( mosaic, width_ratios=[1] * len(show_sim) + [0.05], gridspec_kw={}, ) for sim_label in show_sim: ax = axd[sim_label] ax.set_title( f"({next(iletters)})", loc="left", fontdict={"weight": "bold"}, pad=3, ) ax.set_title( SIMULATIONS_OLD[sim_label].title, loc="center", fontdict={"weight": "bold"}, pad=3, color=SIMULATIONS_OLD[sim_label].kw_plt["color"], ) if diag_key == "conv_prec" and sim_label == "hab1_mod_c192s10e": [ax.spines[spine].set_visible(False) for spine in ax.spines] ax.tick_params(colors=plt.rcParams["figure.facecolor"]) # ax. continue cube = DIAGS[diag_key].recipe(dset_tmr[sim_label]) cube.convert_units(tex2cf_units(DIAGS[diag_key].units)) y, x = cube.dim_coords if coord_mapping := coord_mappings.get(x.name()): x.convert_units(coord_mapping["units"]) ax.set_xticks(coord_mapping["ticks"]) ax.set_xlim(coord_mapping["ticks"][0], coord_mapping["ticks"][-1]) if coord_mapping := coord_mappings.get(y.name()): y.convert_units(coord_mapping["units"]) ax.set_yticks(coord_mapping["ticks"]) ax.set_ylim(coord_mapping["ticks"][0], coord_mapping["ticks"][-1]) if ax.get_subplotspec().is_first_col(): ax.set_ylabel( f"{capitalise(y.name())} [{y.units}]", size="small", labelpad=1 ) elif not ax.get_subplotspec().is_last_col(): ax.set_yticklabels([]) if ax.get_subplotspec().is_last_row(): ax.set_xlabel( f"{capitalise(x.name())} [{x.units}]", size="small", labelpad=1 ) ax.tick_params(labelsize="small") h = getattr(ax, DIAGS[diag_key].method)( x.points, y.points, cube.data, **DIAGS[diag_key].kw_plt ) if ( iris.util.guess_coord_axis(x) == "X" and iris.util.guess_coord_axis(y) == "Y" ): at = AnchoredText( cube_minmeanmax_str( cube, fmt=DIAGS[diag_key].fmt, precision=1, sep="\n", eq_sign=": ", ), loc="lower left", frameon=True, prop={ "size": "xx-small", "weight": "bold", "color": SIMULATIONS_OLD[sim_label].kw_plt["color"], }, ) at.patch.set_facecolor(mcol.to_rgba("w", alpha=0.75)) at.patch.set_edgecolor("none") ax.add_artist(at) if diag_key in plot_winds: u = dset_tmr[sim_label].extract_cube(lfric.u) v = dset_tmr[sim_label].extract_cube(lfric.v) for cube in [u, v]: ensure_bounds(cube, coords=("z"), model=lfric) u = u.extract(height_constraint) v = v.extract(height_constraint) rounded_height = round(u.coord(lfric.z).points[0]) wspd = (u**2 + v**2) ** 0.5 ax.streamplot( x.points, y.points, u.data, v.data, density=0.75, color=SIMULATIONS_OLD[sim_label].kw_plt["color"], linewidth=wspd.data / wspd.data.max(), arrowstyle="Fancy, head_length=0.5, head_width=0.2, tail_width=0.1", # broken_streamlines=False ) if diag_key in plot_w_zm_day: cube = DIAGS["w_zm_day"].recipe(dset_tmr[sim_label]) cube.convert_units(tex2cf_units(DIAGS["w_zm_day"].units)) _ = ax.contourf( x.points, y.points, cube.data, **DIAGS["w_zm_day"].kw_plt, alpha=0.25 ) cntr = ax.contour(x.points, y.points, cube.data, **DIAGS["w_zm_day"].kw_plt) ax.clabel(cntr, fmt="%.1f") ttl = f"{DIAGS[diag_key].title} [{DIAGS[diag_key].units}]" if diag_key in plot_winds: ttl += f" and Wind Streamlines at {rounded_height} m" extra_label = f"__wind_{rounded_height:05d}m" elif diag_key in plot_w_zm_day: ttl += f" and {DIAGS['w_zm_day'].title} [{DIAGS['w_zm_day'].units}]" extra_label = "__w_zm_day" else: extra_label = "" subfig.suptitle(ttl, fontweight="bold") cbar = subfig.colorbar(h, cax=axd["cax"]) if diag_key in ["tot_prec", "ls_prec", "conv_prec"]: cbar.ax.set_yticks(prec_levels) cbar.ax.set_yticklabels([str(i) for i in prec_levels]) plt.close() # # Show the figure # In[13]: fig # - **Circulation regime bistability in the simulations with the rotation period set to 6.1 days.** # - **The circulation regime switches to another state when the convection scheme is switched off - compare the two leftmost columns (the StretchExplicit # and StretchReduced cases).** # - **Top panels show instantaneous top-of-atmosphere outgoing shortwave radiation.** # - **Bottom panels show the time mean surface temperature in $K$ overlaid by streamlines of the horizontal wind at $\approx$8 km above the surface.** # In[14]: # and save it figsave( fig, paths.figures / f"thai_hab1__{all_sim_file_label(show_sim)}__{time_prof}__toa_osr__{'_'.join(diag_keys)}{extra_label}", )