#!/usr/bin/env python # coding: utf-8 # ### Example 3, part A: Diffusion # # In this example we will look at the diffusion equation and how to handle second-order derivatives. For this, we will introduce Devito's `.laplace` short-hand expression and demonstrate it using the examples from step 7 of the original tutorial. # # So, the equation we are now trying to implement is # # $$\frac{\partial u}{\partial t} = \nu \frac{\partial ^2 u}{\partial x^2} + \nu \frac{\partial ^2 u}{\partial y^2}$$ # # To discretize this equation we will use central differences and reorganizing the terms yields # # \begin{align} # u_{i,j}^{n+1} = u_{i,j}^n &+ \frac{\nu \Delta t}{\Delta x^2}(u_{i+1,j}^n - 2 u_{i,j}^n + u_{i-1,j}^n) \\ # &+ \frac{\nu \Delta t}{\Delta y^2}(u_{i,j+1}^n-2 u_{i,j}^n + u_{i,j-1}^n) # \end{align} # # As usual, we establish our baseline experiment by re-creating some of the original example runs. So let's start by defining some parameters. # In[1]: from examples.cfd import plot_field, init_hat import numpy as np get_ipython().run_line_magic('matplotlib', 'inline') # Some variable declarations nx = 80 ny = 80 nt = 50 nu = .5 dx = 2. / (nx - 1) dy = 2. / (ny - 1) sigma = .25 dt = sigma * dx * dy / nu # We now set up the diffusion operator as a separate function, so that we can re-use if for several runs. # In[2]: def diffuse(u, nt): for n in range(nt + 1): un = u.copy() u[1:-1, 1:-1] = (un[1:-1,1:-1] + nu * dt / dy**2 * (un[1:-1, 2:] - 2 * un[1:-1, 1:-1] + un[1:-1, 0:-2]) + nu * dt / dx**2 * (un[2:,1: -1] - 2 * un[1:-1, 1:-1] + un[0:-2, 1:-1])) u[0, :] = 1 u[-1, :] = 1 u[:, 0] = 1 u[:, -1] = 1 # Now let's take this for a spin. In the next two cells we run the same diffusion operator for a varying number of timesteps to see our "hat function" dissipate to varying degrees. # In[3]: #NBVAL_IGNORE_OUTPUT # Initialise u with hat function u = np.empty((nx, ny)) init_hat(field=u, dx=dx, dy=dy, value=1) # Field initialization. # This will create 4 equally spaced 10x10 hat functions of various values. u[ nx//4:nx//4+10 , ny//4:ny//4+10 ] = 2 u[ 3*nx//4:3*nx//4+10 , ny//4:ny//4+10 ] = 3 u[ nx//4:nx//4+10 , 3*ny//4:3*ny//4+10 ] = 4 u[ 3*ny//4:3*ny//4+10 , 3*ny//4:3*ny//4+10 ] = 5 print ("Initial state") plot_field(u, zmax=4.5) diffuse(u, nt) print ("After", nt, "timesteps") plot_field(u, zmax=4.5) diffuse(u, nt) print ("After another", nt, "timesteps") plot_field(u, zmax=4.5) # Excellent. Now for the Devito part, we need to note one important detail to our previous examples: we now have a second-order derivative. So, when creating our `TimeFunction` object we need to tell it about our spatial discretization by setting `space_order=2`. Only then can we use the shorthand notation `u.dx2` and `u.dy2` to denote second order derivatives. # In[4]: from devito import Grid, TimeFunction, Eq, solve from sympy.abc import a from sympy import nsimplify # Initialize `u` for space order 2 grid = Grid(shape=(nx, ny), extent=(2., 2.)) u = TimeFunction(name='u', grid=grid, space_order=2) # Create an equation with second-order derivatives eq = Eq(u.dt, a * (u.dx2 + u.dy2)) stencil = solve(eq, u.forward) eq_stencil = Eq(u.forward, stencil) print(nsimplify(eq_stencil)) # Now, there is another trick here! Note how the above formulation explicitly uses `u.dx2` and `u.dy2` to denote the laplace operator, which makes this equation dependent on the spatial dimension. We can instead use the notation `u.laplace` to denote all second order derivatives in space, allowing us to reuse this code for 2D and 3D examples. # In[5]: eq = Eq(u.dt, a * u.laplace) stencil = solve(eq, u.forward) eq_stencil = Eq(u.forward, stencil) print(nsimplify(eq_stencil)) # Great. Now all that is left is to put it all together to build the operator and use it on our examples. For illustration purposes we will do this in one cell, including update equation and boundary conditions. # In[6]: #NBVAL_IGNORE_OUTPUT from devito import Operator, Constant, Eq, solve # Reset our data field and ICs init_hat(field=u.data[0], dx=dx, dy=dy, value=1.) # Field initialization u.data[0][ nx//4:nx//4+10 , ny//4:ny//4+10 ] = 2 u.data[0][ 3*nx//4:3*nx//4+10 , ny//4:ny//4+10 ] = 3 u.data[0][ nx//4:nx//4+10 , 3*ny//4:3*ny//4+10 ] = 4 u.data[0][ 3*ny//4:3*ny//4+10 , 3*ny//4:3*ny//4+10 ] = 5 # Create an operator with second-order derivatives a = Constant(name='a') eq = Eq(u.dt, a * u.laplace, subdomain=grid.interior) stencil = solve(eq, u.forward) eq_stencil = Eq(u.forward, stencil) # Create boundary condition expressions x, y = grid.dimensions t = grid.stepping_dim bc = [Eq(u[t+1, 0, y], 1.)] # left bc += [Eq(u[t+1, nx-1, y], 1.)] # right bc += [Eq(u[t+1, x, ny-1], 1.)] # top bc += [Eq(u[t+1, x, 0], 1.)] # bottom op = Operator([eq_stencil] + bc) op(time=nt, dt=dt, a=nu) print ("After", nt, "timesteps") plot_field(u.data[0], zmax=4.5) op(time=nt, dt=dt, a=nu) print ("After another", nt, "timesteps") plot_field(u.data[0], zmax=4.5) # And now let's use the same operator again to show the more diffused field. In fact, instead of resetting the previously used object `u`, we can also create a new `TimeFunction` object and tell our operator to use this. In this cell we will double the value of `time`. # In[7]: #NBVAL_IGNORE_OUTPUT u2 = TimeFunction(name='u2', grid=grid, space_order=2) init_hat(field=u2.data[0], dx=dx, dy=dy, value=1.) # Field initialization u2.data[0][ nx//4:nx//4+10 , ny//4:ny//4+10 ] = 2 u2.data[0][ 3*nx//4:3*nx//4+10 , ny//4:ny//4+10 ] = 3 u2.data[0][ nx//4:nx//4+10 , 3*ny//4:3*ny//4+10 ] = 4 u2.data[0][ 3*ny//4:3*ny//4+10 , 3*ny//4:3*ny//4+10 ] = 5 op(u=u2, time=2*nt, dt=dt, a=nu) print ("After", 2*nt, "timesteps") plot_field(u2.data[0], zmax=4.5) op(u=u2, time=2*nt, dt=dt, a=nu) print ("After another", 2*nt, "timesteps") plot_field(u2.data[0], zmax=4.5) # In[ ]: