using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations gr(); ε = 0.05 x = 0.1 Γ = Segment(-1 , x-ε) ∪ Segment(x+ε , 1) t = Fun(Γ) f = Fun(1/(t - x)) @show log(1 - x) - log(1+x) plot(f; label="f", title="eps = $(ε), integral = $(sum(f))",ylims=(-40,40)) scatter!([x],[0.0];label="x") x = Fun(-1 .. 1) f = exp(x)*sqrt(1-x^2) plot(f; label="function") plot!(hilbert(f); label="hilbert transform") x = Fun(-1 .. 1) f = exp(x)/sqrt(1-x^2) plot(f; label="function", ylims=(-5,5)) plot!(hilbert(f); label="hilbert transform") f = exp(x) xx = range(-0.9999; stop=0.9999, length=500) plot(f; ylims=(-5,5), label="function") plot!(xx, hilbert.(f, xx); label="hilbert transform") f = exp(x)sqrt(1-x^2) cauchy(f, 0.1+0.0im)+cauchy(f, 0.1-0.0im) , -im*hilbert(f)(0.1) x = Fun() norm(hilbert(1/sqrt(1-x^2))) plot(hilbert(sqrt(1-x^2))) hilbert(Fun(1,Legendre()), 0.1), (log(1-0.1)-log(0.1+1))/π f = exp(x)sqrt(1-x^2) cauchy(f, 10.0+im), cauchy(f, 10.0-im) f(0.1), 2real(cauchy(f, 0.1+0.0im)), -2real(cauchy(f, 0.1-0.0im)) -hilbert(f, 0.1), 2imag(cauchy(f, 0.1+0.0im)), 2imag(cauchy(f, 0.1-0.0im))