using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations gr(); μ = z -> -im*(sqrt(z-1)sqrt(z+1) - z) Φ = (θ,z) -> exp(-im*θ)*z + sin(θ)μ(z) u = (θ,x,y) -> imag(Φ(θ, x + im*y)) xx = yy = range(-3; stop=3 , length=500) contour(xx, yy, u.(1.3,xx',yy); nlevels = 100) plot!(Segment(-1.,1.); color=:black, label="obstacle") D = randn() θ = 0.1 x = Fun() w = 2sin(θ) * (D-x^2)/sqrt(1-x^2) hilbert(w,0.2)- (-2sin(θ)*0.2) a = 0.3 θ = 1.3 Γ = Segment(-1,-a) ∪ Segment(a, 1) x = Fun(Γ) sp = PiecewiseSpace(JacobiWeight.(0.5,0.5,components(Γ))...) H = Hilbert(sp) o₁ = Fun(x -> -1 ≤ x ≤ -a ? 1 : 0, Γ ) o₂ = Fun(x -> a ≤ x ≤ 1 ? 1 : 0, Γ ) a, b, f = [o₁ o₂ H] \ [-2x*sin(θ)] Φ = (θ,z) -> exp(-im*θ)*z + cauchy(f, z) v = (θ,x,y) -> imag(Φ(θ, x + im*y)) xx = yy = range(-3.; stop=3., length=500) contour(xx, yy, v.(θ, xx',yy); nlevels = 100) plot!(Γ; color=:black, label="obstacle")