using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations, DifferentialEquations gr(); x = Fun() w = 1/sqrt(1-x^2) z = 0.1+0.1im n = 10 L = zeros(ComplexF64,n,n) L[1,1] = 1 L[2,1] = -z L[2,2] = 1 for k=3:n L[k,k-1] = -z L[k,k-2] = L[k,k] = 1/2 end C = L \ [ im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)] T₅ = Fun(Chebyshev(), [zeros(5);1]) cauchy(T₅*w,z) - C[6] x = Fun() w = 1/sqrt(1-x^2) z = 5+6im n = 100 L = zeros(ComplexF64,n,n) L[1,1] = 1 L[2,1] = -z L[2,2] = 1 for k=3:n L[k,k-1] = -z L[k,k-2] = L[k,k] = 1/2 end C = L \ [ im/(2sqrt(z-1)sqrt(z+1)); 1/(2im); zeros(n-2)] T₂₀ = Fun(Chebyshev(), [zeros(20);1]) C[21], cauchy(T₂₀*w, z) L[2:end,1:end-1] C = L[2:end,1:end-1]\ [1/(2im); zeros(n-2)] C[6]- cauchy(T₅*w, z) x = 0.1 T = Fun(Chebyshev(),[zeros(n);1]) hilbert(w*T,x) - Fun(Ultraspherical(1), [zeros(n-1);1])(x)