using Plots, ComplexPhasePortrait, ApproxFun, SingularIntegralEquations,SpecialFunctions, OscillatoryIntegrals gr(); t = Fun(0.0 .. 40) f = exp(-t) fourier(f, -2.0), im/(im-2.0) 1-(fourier(-exp(-t), -2.0) + fourier(-exp(Fun(-40 .. 0)), -2.0)), (2.0^2 + 3)/(2.0^2+1) κ = z -> imag(z) > 0 ? (z+im*sqrt(3))/(z+im) : (z-im)/(z-im*sqrt(3)) κ(0.1+eps()im) - κ(0.1-eps()im)*(3+0.1^2)/(1+0.1^2) Y = z -> imag(z) > 0 ? -im*(1-sqrt(3))/(1+sqrt(3))/(z+im*sqrt(3)) : -2im/((z-im)*(1+sqrt(3))) s = 0.1 Y(s+eps()im) - Y(s-eps()im) im/(s-im)*(s+im)/(s + im*sqrt(3)) φ = z -> imag(z) > 0 ? -im*(1-sqrt(3))/(1+sqrt(3))/(z+im) : -2im/((z-sqrt(3)*im)*(1+sqrt(3))) g = s -> (s^2+3)/(s^2+1) s = 0.1 φ(s+eps()im) - φ(s-eps()im)*g(s) - im/(s-im) t = Fun(0 .. 10) u = 2exp(-sqrt(3)*t)/(1+sqrt(3)) x = 0.1 u(x) + sum(exp(-abs(t-x))*u) - exp(-x)