using Plots, ComplexPhasePortrait, ApproxFun gr(); f = x -> x^2/(x^4+1) phaseplot(-3..3, -2..2, f) z₁,z₂,z₃,z₄ = exp(im*π/4), exp(3im*π/4), exp(5im*π/4), exp(7im*π/4) res₁ = z₁^2 / ((z₁ - z₂)*(z₁ - z₃)*(z₁ - z₄) ) res₂ = z₂^2 / ((z₂ - z₁)*(z₂ - z₃)*(z₂ - z₄) ) 2π*im*(res₁ + res₂), sum(Fun(f, Line())) res₃ = z₃^2 / ((z₃ - z₁)*(z₃ - z₂)*(z₃ - z₄) ) res₄ = z₄^2 / ((z₄ - z₁)*(z₄ - z₃)*(z₄ - z₂) ) -2π*im*(res₃ + res₄), sum(Fun(f, Line())) f = x -> x^2/(x+im)^3 z = 2.0+2.0im sum(Fun(x-> f(x)/(x - z), Line()))/(2π*im) - f(z) f = x -> x^2/(x+im)^3 z = 2.0-2.0im sum(Fun(x-> f(x)/(x - z), Line()))/(2π*im) , f(z) f = x -> x^2/(x-im)^3 z = 2.0-2.0im -sum(Fun(x-> f(x)/(x - z), Line()))/(2π*im) , f(z) f = x -> exp(im*x)/(x+im) z = 2 + 2im sum(Fun(x-> f(x)/(x - z), -500 .. 500))/(2π*im) - f(z) xx = -200:0.1:200 plot(xx,real.(f.(xx))) z = -2-im f = x -> exp(im*x)/(x+im) sum(Fun(x-> f(x)/(x - z), -500 .. 500))/(2π*im) z = -2-im f = x -> exp(im*x)/(x-im) sum(Fun(x-> f(x)/(x - z), -500 .. 500))/(2π*im), f(z) z = -2-im f = x -> exp(-im*x)/(x-im) -sum(Fun(x-> f(x)/(x - z), -500 .. 500))/(2π*im), f(z) θ = range(0; stop=π/2, length=100) plot(θ, sin.(θ); label="sin t") plot!(θ, 2θ/π; label = "2t / pi") f = x -> exp(im*x)*x/(x^2+1) sum(abs.(Fun(f, 0 .. 2000))) f = x -> exp(im*x)*x/(x^2+1) sum(Fun(f, -30000 .. 30000)) 2π*im*exp(-1)*im/(im+im) # 2π*im* residue of g(z)exp(im*z) at z = im