#!/usr/bin/env python # coding: utf-8 # # Convolutional Neural Network in TensorFlow # # Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien # # ## Setup # # Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md) # In[2]: # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # In[3]: import tensorflow as tf # In[18]: # Parameters learning_rate = 0.001 training_iters = 100000 batch_size = 128 display_step = 20 # In[5]: # Network Parameters n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units # In[6]: # tf Graph input x = tf.placeholder(tf.float32, [None, n_input]) y = tf.placeholder(tf.float32, [None, n_classes]) keep_prob = tf.placeholder(tf.float32) #dropout (keep probability) # In[8]: # Create model def conv2d(img, w, b): return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME'),b)) def max_pool(img, k): return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME') def conv_net(_X, _weights, _biases, _dropout): # Reshape input picture _X = tf.reshape(_X, shape=[-1, 28, 28, 1]) # Convolution Layer conv1 = conv2d(_X, _weights['wc1'], _biases['bc1']) # Max Pooling (down-sampling) conv1 = max_pool(conv1, k=2) # Apply Dropout conv1 = tf.nn.dropout(conv1, _dropout) # Convolution Layer conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2']) # Max Pooling (down-sampling) conv2 = max_pool(conv2, k=2) # Apply Dropout conv2 = tf.nn.dropout(conv2, _dropout) # Fully connected layer # Reshape conv2 output to fit dense layer input dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Relu activation dense1 = tf.nn.relu(tf.add(tf.matmul(dense1, _weights['wd1']), _biases['bd1'])) # Apply Dropout dense1 = tf.nn.dropout(dense1, _dropout) # Apply Dropout # Output, class prediction out = tf.add(tf.matmul(dense1, _weights['out']), _biases['out']) return out # In[9]: # Store layers weight & bias weights = { # 5x5 conv, 1 input, 32 outputs 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])), # 5x5 conv, 32 inputs, 64 outputs 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])), # fully connected, 7*7*64 inputs, 1024 outputs 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])), # 1024 inputs, 10 outputs (class prediction) 'out': tf.Variable(tf.random_normal([1024, n_classes])) } biases = { 'bc1': tf.Variable(tf.random_normal([32])), 'bc2': tf.Variable(tf.random_normal([64])), 'bd1': tf.Variable(tf.random_normal([1024])), 'out': tf.Variable(tf.random_normal([n_classes])) } # In[10]: # Construct model pred = conv_net(x, weights, biases, keep_prob) # In[11]: # Define loss and optimizer cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # In[12]: # Evaluate model correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # In[13]: # Initializing the variables init = tf.global_variables_initializer() # In[19]: # Launch the graph with tf.Session() as sess: sess.run(init) step = 1 # Keep training until reach max iterations while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout}) if step % display_step == 0: # Calculate batch accuracy acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) # Calculate batch loss loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.}) print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + \ "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc) step += 1 print "Optimization Finished!" # Calculate accuracy for 256 mnist test images print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})