#!/usr/bin/env python # coding: utf-8 # # Multilayer Perceptron in TensorFlow # # Credits: Forked from [TensorFlow-Examples](https://github.com/aymericdamien/TensorFlow-Examples) by Aymeric Damien # # ## Setup # # Refer to the [setup instructions](http://nbviewer.ipython.org/github/donnemartin/data-science-ipython-notebooks/blob/master/deep-learning/tensor-flow-examples/Setup_TensorFlow.md) # In[2]: # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # In[3]: import tensorflow as tf # In[4]: # Parameters learning_rate = 0.001 training_epochs = 15 batch_size = 100 display_step = 1 # In[5]: # Network Parameters n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 256 # 2nd layer num features n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) # In[6]: # tf Graph input x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # In[7]: # Create model def multilayer_perceptron(_X, _weights, _biases): #Hidden layer with RELU activation layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) #Hidden layer with RELU activation layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) return tf.matmul(layer_2, weights['out']) + biases['out'] # In[8]: # Store layers weight & bias weights = { 'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes])) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } # In[9]: # Construct model pred = multilayer_perceptron(x, weights, biases) # In[10]: # Define loss and optimizer # Softmax loss cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Adam Optimizer optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # In[11]: # Initializing the variables init = tf.global_variables_initializer() # In[12]: # Launch the graph with tf.Session() as sess: sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch # Display logs per epoch step if epoch % display_step == 0: print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost) print "Optimization Finished!" # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})