from fastai.tabular import * # Quick accesss to tabular functionality path = untar_data(URLs.ADULT_SAMPLE) df = pd.read_csv(path/'adult.csv') df['salary'].unique() # function import from fastai.utils.mem import * # other function teset gpu_with_max_free_mem() # test reduce_mem_usage(df) df.head() dep_var = 'salary' cat_names = ['workclass', 'education', 'marital-status', 'occupation', 'relationship', 'race'] cont_names = ['age', 'fnlwgt', 'education-num'] procs = [FillMissing, Categorify, Normalize] test = TabularList.from_df(df.iloc[800:1000].copy(), path=path, cat_names=cat_names, cont_names=cont_names) data = (TabularList.from_df(df, path=path, cat_names=cat_names, cont_names=cont_names, procs=procs) .split_by_idx(list(range(800,1000))) .label_from_df(cols=dep_var) .add_test(test) .databunch()) data.show_batch(rows=10) learn = tabular_learner(data, layers=[200,100], metrics=accuracy) learn.fit(1, 1e-2) row = df.iloc[0] learn.predict(row)