#!/usr/bin/env python # coding: utf-8 # In[ ]: # Introduction to Image Processing # This numerical tour explores some basic image processing tasks. # *Important:* Please read the [installation page](http://gpeyre.github.io/numerical-tours/installation_python/) for details about how to install the toolboxes. # $\newcommand{\dotp}[2]{\langle #1, #2 \rangle}$ # $\newcommand{\enscond}[2]{\lbrace #1, #2 \rbrace}$ # $\newcommand{\pd}[2]{ \frac{ \partial #1}{\partial #2} }$ # $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ # $\newcommand{\umax}[1]{\underset{#1}{\max}\;}$ # $\newcommand{\umin}[1]{\underset{#1}{\min}\;}$ # $\newcommand{\uargmin}[1]{\underset{#1}{argmin}\;}$ # $\newcommand{\norm}[1]{\|#1\|}$ # $\newcommand{\abs}[1]{\left|#1\right|}$ # $\newcommand{\choice}[1]{ \left\{ \begin{array}{l} #1 \end{array} \right. }$ # $\newcommand{\pa}[1]{\left(#1\right)}$ # $\newcommand{\diag}[1]{{diag}\left( #1 \right)}$ # $\newcommand{\qandq}{\quad\text{and}\quad}$ # $\newcommand{\qwhereq}{\quad\text{where}\quad}$ # $\newcommand{\qifq}{ \quad \text{if} \quad }$ # $\newcommand{\qarrq}{ \quad \Longrightarrow \quad }$ # $\newcommand{\ZZ}{\mathbb{Z}}$ # $\newcommand{\CC}{\mathbb{C}}$ # $\newcommand{\RR}{\mathbb{R}}$ # $\newcommand{\EE}{\mathbb{E}}$ # $\newcommand{\Zz}{\mathcal{Z}}$ # $\newcommand{\Ww}{\mathcal{W}}$ # $\newcommand{\Vv}{\mathcal{V}}$ # $\newcommand{\Nn}{\mathcal{N}}$ # $\newcommand{\NN}{\mathcal{N}}$ # $\newcommand{\Hh}{\mathcal{H}}$ # $\newcommand{\Bb}{\mathcal{B}}$ # $\newcommand{\Ee}{\mathcal{E}}$ # $\newcommand{\Cc}{\mathcal{C}}$ # $\newcommand{\Gg}{\mathcal{G}}$ # $\newcommand{\Ss}{\mathcal{S}}$ # $\newcommand{\Pp}{\mathcal{P}}$ # $\newcommand{\Ff}{\mathcal{F}}$ # $\newcommand{\Xx}{\mathcal{X}}$ # $\newcommand{\Mm}{\mathcal{M}}$ # $\newcommand{\Ii}{\mathcal{I}}$ # $\newcommand{\Dd}{\mathcal{D}}$ # $\newcommand{\Ll}{\mathcal{L}}$ # $\newcommand{\Tt}{\mathcal{T}}$ # $\newcommand{\si}{\sigma}$ # $\newcommand{\al}{\alpha}$ # $\newcommand{\la}{\lambda}$ # $\newcommand{\ga}{\gamma}$ # $\newcommand{\Ga}{\Gamma}$ # $\newcommand{\La}{\Lambda}$ # $\newcommand{\si}{\sigma}$ # $\newcommand{\Si}{\Sigma}$ # $\newcommand{\be}{\beta}$ # $\newcommand{\de}{\delta}$ # $\newcommand{\De}{\Delta}$ # $\newcommand{\phi}{\varphi}$ # $\newcommand{\th}{\theta}$ # $\newcommand{\om}{\omega}$ # $\newcommand{\Om}{\Omega}$ # # In[5]: from nt_toolbox.general import * from nt_toolbox.signal import * get_ipython().run_line_magic('pylab', 'inline') get_ipython().run_line_magic('matplotlib', 'inline') # ## Image Loading and Displaying # Several functions are implemented to load and display images. # # # First we load an image. # # path to the images # In[18]: name = 'nt_toolbox/data/hibiscus.bmp' n = 256 M = load_image(name, n) # We can display it. It is possible to zoom on it, extract pixels, etc. # In[19]: m = int(n/2) imageplot(M[m-25:m+25,m-25:m+25], 'Zoom', [1, 2, 2]) # ## Image Modification # An image is a 2D array, that can be modified as a matrix. # In[20]: imageplot(-M, '-M', [1,2,1]) imageplot(M[::-1,:], 'Flipped', [1,2,2]) # Blurring is achieved by computing a convolution with a kernel. # Compute the low pass Gaussian kernel. Warning, the indexes needs to be modulo $n$ in order to use FFTs. # In[21]: sigma = 5 t = concatenate( (arange(0,n/2+1), arange(-n/2,-1)) ) [Y,X] = np.meshgrid(t,t) h = exp( -(X**2+Y**2)/(2.0*float(sigma)**2) ) h = h/sum(h) imageplot(fftshift(h)) # Compute the periodic convolution ussing FFTs # In[22]: Mh = real( ifft2(fft2(M) * fft2(h)) ) # Display # In[23]: imageplot(M, 'Image', [1, 2, 1]) imageplot(Mh, 'Blurred', [1, 2, 2]) # Several differential and convolution operators are implemented. # In[24]: G = grad(M) imageplot(G[:,:,0], 'd/ dx', [1, 2, 1]) imageplot(G[:,:,1], 'd/ dy', [1, 2, 2]) # ## Fourier Transform # The 2D Fourier transform can be used to perform low pass approximation # and interpolation (by zero padding). # # Compute and display the Fourier transform (display over a log scale). # The function fftshift is useful to put the 0 low frequency in the # middle. After fftshift, the zero frequency is located at position # $(n/2+1,n/2+1)$. # In[25]: Mf = fft2(M) Lf = fftshift(log(abs(Mf) + 1e-1)) imageplot(M, 'Image', [1, 2, 1]) imageplot(Lf, 'Fourier transform', [1, 2, 2]) # **Exercise 1:** To avoid boundary artifacts and estimate really the frequency content of # the image (and not of the artifacts!), one needs to multiply M by a # smooth windowing function h and compute fft2(M*h). Use a sine # windowing function. Can you interpret the resulting filter ? # In[26]: run -i nt_solutions/introduction_3_image/exo1 # **Exercise 2:** Perform low pass filtering by removing the high frequencies of the # spectrum. What do you oberve ? # In[28]: run -i nt_solutions/introduction_3_image/exo2