#!/usr/bin/env python # coding: utf-8 # The purpose of this project is to implement formulas for the Greeks and then use them to test various methods of doing Monte Carlo Greeks. # The functions written in the first section will be used in later projects. # In[1]: # Mount google drive and setup paths import sys # mount google drive from google.colab import drive drive.mount('/content/drive/', force_remount=True) # specify path name to import py file folder_name = 'Jupyter Notebooks/Quantitative Finance' sys.path.append("drive/My Drive/" + folder_name) # In[ ]: # Import necessary libraries from random import random from random import randint from random import seed import pandas as pd from GBM import * from Option import * from Greeks import * from finite_difference_method import * # ## Implementing the formulas # Implement the following formulas for both European call and put options # # (i) the Delta (spot derivative), # # (ii) the Gamma (2nd spot derivative), # # (iii) the Vega (volatility derivative), # # (iv) the Rho ($r$ derivative), # # (v) the Theta of an option, this is equal to minus the $T$ derivative, # # The formulas are deducible by simply differentiating the Black-Scholes prices. # All implementations of greeks can be found at Option.py, class Greeks. # Let $\tau = T-t.$ # Since # $$ # \begin{align*} # c(t,S) & = S N(d_1) - Ke^{-r\tau} N(d_2) \quad \text{where} \\ # d_1 & = \frac{\ln \left( \frac{S}{K} \right) + (r + 0.5 \sigma^2) \tau}{\sigma\sqrt{\tau}}, \\ # d_2 & = \frac{\ln \left( \frac{S}{K} \right) + (r - 0.5 \sigma^2) \tau}{\sigma\sqrt{\tau}}, \\ # d_1 - d_2 & = \sigma\sqrt{\tau}, # \end{align*} # $$ # by using the following facts # $$ # \begin{align*} # S N'(d_1) & = Ke^{-r\tau} N'(d_2), \\ # \frac{\partial d_1}{\partial S} & = \frac{\partial d_2}{\partial S} = \frac{1}{S\sigma\sqrt{\tau}}, \\ # \frac{\partial d_1}{\partial \sigma} & = - \frac{d_2}{\sigma} \quad, \frac{\partial d_2}{\partial \sigma} = - \frac{d_1}{\sigma}, \\ # \frac{\partial d_1}{\partial r} & = \frac{\partial d_2}{\partial r}, \\ # \end{align*} # $$ # # # we have # # $$ # \begin{align*} # \text{Delta} : \frac{\partial c}{\partial S} & = N(d_1), \\ # \text{Gamma} : \frac{\partial^2 c}{\partial S^2} & = \frac{N'(d_1)}{S\sigma\sqrt{\tau}}, \\ # \text{Vega} : \frac{\partial c}{\partial \sigma} & = S\sqrt{\tau} N'(d_1) , \\ # \text{Rho} : \frac{\partial c}{\partial r} & = K\tau e^{-r\tau} N(d_2), \\ # \text{Theta} : \frac{\partial c}{\partial t} & = -rKe^{-r\tau}N(d_2) - \frac{SN'(d_1)\sigma}{2\sqrt{\tau}} \\ # \end{align*} # $$ # In[ ]: # Testing S = 120 K = 100 r = 0.05 d = 0 sigma = 0.2 T = 1 greeks = Greeks(S, K, r, d, sigma, T) greeks_formula = greeks.get_all() call_greeks = greeks_formula['call'] put_greeks = greeks_formula['put'] call_greeks = pd.DataFrame.from_dict(call_greeks, orient='index', columns = ['formula']) put_greeks = pd.DataFrame.from_dict(put_greeks, orient='index', columns = ['formula']) # In[4]: call_greeks # In[5]: put_greeks # ## Testing # Test them all by comparing with the finite differencing price. # That is let $\epsilon$ be a small number, and compute the price change for bumping the parameter for $\epsilon$ and # divide by $\epsilon$. # To approximate the delta, for example, take # $$\frac{1}{\epsilon}\left( BS(S + \epsilon, T, \sigma, r, d) - BS(S, T, \sigma, r, d) \right)$$ # The Gamma can be approximated by finite differencing the Delta, or by taking the formula # $$\frac{1}{\epsilon^2} \left( BS(S + \epsilon, T, \sigma, r, d) - 2BS(S, T, \sigma, r, d) + BS(S - \epsilon, T, \sigma, r, d) \right)$$ # (Why does this work?) # In[9]: e = 0.001 # error in finite difference method f_S_c = lambda x: Option(S + x, K, r, d, sigma, T).european_call() f_vol_c = lambda x: Option(S, K, r, d, sigma + x, T).european_call() f_r_c = lambda x: Option(S, K, r + x, d, sigma, T).european_call() f_T_c = lambda x: -Option(S, K, r, d, sigma, T + x).european_call() delta_fc_c = finite_difference(f_S_c, e) gamma_fc_c = finite_difference(f_S_c, e, second_order = True) vega_fc_c = finite_difference(f_vol_c, e) rho_fc_c = finite_difference(f_r_c, e) theta_fc_c = finite_difference(f_T_c, e) greeks_approx_c = [delta_fc_c, gamma_fc_c, vega_fc_c, rho_fc_c, theta_fc_c] call_greeks['Finite Difference'] = greeks_approx_c call_greeks['FD Abs error (FD)'] = np.abs(call_greeks.iloc[:,0] - call_greeks.iloc[:,1]) call_greeks # In[10]: f_S_p = lambda x: Option(S + x, K, r, d, sigma, T).european_put() f_vol_p = lambda x: Option(S, K, r, d, sigma + x, T).european_put() f_r_p = lambda x: Option(S, K, r + x, d, sigma, T).european_put() f_T_p = lambda x: -Option(S, K, r, d, sigma, T + x).european_put() delta_fc_p = finite_difference(f_S_p, e) gamma_fc_p = finite_difference(f_S_p, e, second_order = True) vega_fc_p = finite_difference(f_vol_p, e) rho_fc_p = finite_difference(f_r_p, e) theta_fc_p = finite_difference(f_T_p, e) greeks_approx_p = [delta_fc_p, gamma_fc_p, vega_fc_p, rho_fc_p, theta_fc_p] put_greeks['Finite Difference'] = greeks_approx_p put_greeks['FD Abs error (FD)'] = np.abs(put_greeks.iloc[:,0] - put_greeks.iloc[:,1]) put_greeks # In[ ]: # Question: Why does it work? # ## Graphs # Once you have all the formulas working and tested. # Plot the following graphs and try to interpret them. # # (i) The Delta of a call option as a function of spot. # # (ii) The Delta of a call option as a function of time for in-the-money, out-of-the-money and at-the-money options. # # (iii) The Gamma of a call option as a function of spot, # # (iv) The Vega of a call option as a function of volatility, as a function of spot and as a function of time. # In[ ]: # (i) S_upper = 100 graph_num = 5 x = np.linspace(1, S_upper, S_upper) for j in range(graph_num): K = randint(1,100) r = random() T = random() d = random() sigma = random() y = [Greeks(S, K, r, d, sigma, T).delta() for S in range(1, S_upper+1)] plt.plot(x,y) plt.xlabel('Spot') plt.ylabel('Delta') # From above, we observe that delta of a call option is between $0$ and $1$ because it is a cdf. It is convex at the beginning then it becomes concave. # In[ ]: # (ii) K = 100 r = 0 d = 0 sigma = 0.2 S_upper = 200 T_upper = 10 x = np.linspace(1, S_upper, S_upper) for t in reversed(range(1,T_upper)): y = [Greeks(S, K, r, d, sigma, t).delta() for S in range(1, S_upper+1)] plt.plot(x,y, label = str(t)) plt.xlabel('Spot') plt.ylabel('Delta') plt.vlines(K, 0, 1) plt.legend() # From above, if time to maturity decreases, then delta of an ITM call option will increase, OTM will decrease and ATM will approach to $0.5$ # In[ ]: # (iii) S_upper = 100 graph_num = 5 x = np.linspace(1, S_upper, S_upper) for j in range(graph_num): K = randint(1,100) r = random() T = random() d = random() sigma = random() y = [Greeks(S, K, r, d, sigma, T).gamma() for S in range(1, S_upper+1)] plt.plot(x,y) plt.xlabel('Spot') plt.ylabel('Gamma') # From above, gamma of a call option is the normal density function. # (iv) The Vega of a call option as a function of volatility, as a function of spot and as a function of time. # In[ ]: # (iv) function of volatility K = 100 r = 0 d = 0 T = 1 S_upper = 200 sigma_upper = 10 graph_num = 5 x = np.linspace(1, S_upper, S_upper) for vol in range(1,sigma_upper): y = [Greeks(S, K, r, d, vol / 10, T).vega() for S in range(1, S_upper+1)] plt.plot(x,y, label = str(vol)) plt.xlabel('Volatility') plt.ylabel('Vega') plt.legend() # Recall that time to maturity and volatility have the same effect to all option Greeks. # In[ ]: # (iv) # function of spot S_upper = 100 graph_num = 5 x = np.linspace(1, S_upper, S_upper) for j in range(graph_num): K = randint(1,100) r = random() T = random() d = random() sigma = random() y = [Greeks(S, K, r, d, sigma, T).vega() for S in range(1, S_upper+1)] plt.plot(x,y) plt.xlabel('Spot') plt.ylabel('Vega') # In[ ]: # (iv) # function of time K = 100 r = 0 d = 0 sigma = 0.2 S_upper = 200 T_upper = 10 x = np.linspace(1, S_upper, S_upper) for t in range(1,T_upper): y = [Greeks(S, K, r, d, sigma, t).vega() for S in range(1, S_upper+1)] plt.plot(x,y, label = str(t)) plt.xlabel('Time to maturity') plt.ylabel('Vega') plt.legend() # ## Monte Carlo Greeks # We can now try various Monte Carlo methods for computing the Greeks of vanilla options and compare them to the analytical formulas. # Implement the following methods and compare to the formulas. # How do the convergence speeds compare? # # (i) Run the Monte Carlo twice. # The second time with the parameter slightly bumped, and finite difference to get the Greek. # Use different random numbers for the two simulations. # # (ii) Do the same again but using the same random numbers for the two simulations. # (Depending upon the language you are using, it will either default to different random numbers or default to the same ones. # Setting the random number seed is the way to achieve either.) # # (iii) Implement the pathwise derivative estimate method for the Delta. # # (iv) Implement the likelihood ratio method for the Delta. # ---- # # For more information on pathwise derivative estimate and likelihood ratio methods, please refer to the Glasserman's Monte Carlo Methods in Financial Engineering. # # Intuitively, the **pathwise derivative estimate method** allows one to calculate greeks by using the ideas of # # (1) **interchanging derivative and integration (expectation)**, if applicable and # # (2) **the Chain rule**. # # For example, if we want to calculate delta of an European call option, since $S_T$ is a function of $S_0,$ then pathwise method implies that # \begin{align*} # \frac{\partial c}{\partial S_0} & = \frac{\partial}{\partial S_0} \mathbb{E}[e^{-rT}(S_T-K)^+] \\ # & = \mathbb{E}\left[ \frac{\partial}{\partial S_0} e^{-rT}(S_T-K)^+ \right] \\ # & = \mathbb{E} \left[e^{-rT} 1_{\{S_T>K\}} \frac{\partial S_T}{\partial S_0} \right] \\ # & = \mathbb{E} \left[ e^{-rT} 1_{\{S_T>K\}} e^{(r-d - \frac{1}{2} \sigma^2)T + \sigma \sqrt{T} Z} \right] \\ # & = \mathbb{E} \left[ e^{-rT} 1_{\{S_T>K\}} \frac{S_T}{S_0}\right], # \end{align*} # where the expectation can be calculated using Monte Carlo method. # # The pathwise derivative method can be modified to calculate other greeks as well. # # However, one **drawback of the pathwise derivative method** is that the **payoff function must be differentiable or differentiable almost everywhere.** # In the example above, the payoff function $(S_T-K)^+$ is differentiable everywhere except at $S_T = K$. # ---- # # The **likelihood ratio method** uses the fact that the random variable has density function. # Assume that $X = (X_1,...,X_n)$ has a probability density function $g_\theta$ with parameter $\theta.$ (One can think of $X_1,...,X_n$ as underlying financial instruments.) # Then # $$\mathbb{E}(Y) = \mathbb{E}_\theta(f(X_1,...,X_n)) = \int_{\mathbb{R}^n }f(x)\cdot g_\theta(x) dx.$$ # **Assume that we can interchange derivativ and integration.** # Then # $$\frac{d}{d\theta}\mathbb{E}_\theta(f(X_1,...,X_n)) = \int_{\mathbb{R}^n }f(x)\cdot \frac{ \frac{d g_\theta(x)}{d\theta} }{g_\theta(x)} g_\theta(x) dx = \mathbb{E}_\theta \left[ f(X) \cdot \frac{ \frac{d g_\theta(X)}{d\theta} }{g_\theta(X)} \right].$$ # # For example, if we want to calculate delta of a European call option, then # $$\theta = S_0, \quad f(S_T) = e^{-rT} (S_T-K)^+, \quad g_\theta(x) = \frac{1}{x\sigma\sqrt{T}} \phi(\xi(x))$$ # where # $$\xi(x) = \frac{ \ln \left( \frac{x}{S_0} \right) - (r - \frac{1}{2}\sigma^2)T }{\sigma\sqrt{T}}.$$ # Note that $g_\theta$ is obtained by using $S_T = S_0 e^{ (r - \frac{1}{2}\sigma^2)T + \sigma \sqrt{T} Z }.$ # Since $\frac{\phi'(x)}{\phi(x)} = -x,$ so # $$ \frac{\frac{d g_\theta(x)}{d S_0}}{g_\theta(x)} = \frac{\phi'(\xi(x))\cdot \xi'(x)}{\phi(\xi(x))} = -\xi(x) \xi'(x) = \frac{ \ln \left( \frac{x}{S_0} \right) - (r - \frac{1}{2}\sigma^2)T }{ S_0\sigma^2 T} .$$ # It follows that # $$\Delta = \frac{d}{d S(0)}\mathbb{E} [e^{-rT} (S_T-K)^+] = \mathbb{E} \left[ e^{-rT}(S_T-K)^+ \left( \frac{ \ln \left( \frac{S_T}{S_0} \right) - (r - \frac{1}{2}\sigma^2)T }{ S_0\sigma^2 T} \right) \right].$$ # In[ ]: # (ii) e = 0.001 S0 = 120 K = 100 r = 0.05 d = 0 sigma = 0.2 T = 1 num_steps = 100 num_paths = 17 # apply Monte Carlo to approximate european call's greeks BS_mc_S_c = lambda x: black_scholes_monte_carlo_pricer('European call', S0 + x, K, r, d, sigma, T, num_steps, num_paths, False, 0) BS_mc_r_c = lambda x: black_scholes_monte_carlo_pricer('European call', S0, K, r + x, d, sigma, T, num_steps, num_paths, False, 0) BS_mc_vol_c = lambda x: black_scholes_monte_carlo_pricer('European call', S0, K, r, d, sigma + x, T, num_steps, num_paths, False, 0) BS_mc_T_c = lambda x: - black_scholes_monte_carlo_pricer('European call', S0, K, r, d, sigma, T + x, num_steps, num_paths, False, 0) delta_mc_c = finite_difference(BS_mc_S_c, e) gamma_mc_c = finite_difference(BS_mc_S_c, e, True) vega_mc_c = finite_difference(BS_mc_vol_c, e) rho_mc_c = finite_difference(BS_mc_r_c, e) theta_mc_c = finite_difference(BS_mc_T_c, e) greeks_mc_c = [delta_mc_c, gamma_mc_c, vega_mc_c, rho_mc_c, theta_mc_c] call_greeks['MC Greeks'] = greeks_mc_c call_greeks['MC abs error'] = np.abs(call_greeks.iloc[:, 0] - call_greeks.iloc[:,3]) # apply Monte Carlo to approximate european put's greeks BS_mc_S_p = lambda x: black_scholes_monte_carlo_pricer('European put', S0 + x, K, r, d, sigma, T, num_steps, num_paths, False, 0) BS_mc_r_p = lambda x: black_scholes_monte_carlo_pricer('European put', S0, K, r + x, d, sigma, T, num_steps, num_paths, False, 0) BS_mc_vol_p = lambda x: black_scholes_monte_carlo_pricer('European put', S0, K, r, d, sigma + x, T, num_steps, num_paths, False, 0) BS_mc_T_p = lambda x: - black_scholes_monte_carlo_pricer('European put', S0, K, r, d, sigma, T + x, num_steps, num_paths, False, 0) delta_mc_p = finite_difference(BS_mc_S_p, e) gamma_mc_p = finite_difference(BS_mc_S_p, e, True) vega_mc_p = finite_difference(BS_mc_vol_p, e) rho_mc_p = finite_difference(BS_mc_r_p, e) theta_mc_p = finite_difference(BS_mc_T_p, e) greeks_mc_p = [delta_mc_p, gamma_mc_p, vega_mc_p, rho_mc_p, theta_mc_p] put_greeks['MC Greeks'] = greeks_mc_p put_greeks['MC abs error'] = np.abs(put_greeks.iloc[:, 0] - put_greeks.iloc[:,3]) # In[12]: call_greeks # In[13]: put_greeks # Note that the vega generated using Monte Carlo deviates from true value significantly compared to other Greeks. # Recall that the pathwise derivative esimate method propses that # \begin{align*} # \Delta = \frac{\partial c}{\partial S_0} & = \mathbb{E} \left[ e^{-rT} 1_{\{S_T>K\}} \frac{S_T}{S_0}\right], \\ # \frac{\partial c}{\partial \sigma} & = \mathbb{E}\left[ e^{-rT} 1_{\{ S_T>K \}}\left( \frac{\log \left( \frac{S_T}{S_0}\right) - (r + 0.5\sigma^2)T}{\sigma} \right) S_T \right] . # \end{align*} # Note that pathwise derivative estimate method fails for $Y = e^{-rT} 1_{\{S_T>K\}}$ because # $$0 = \mathbb{E} \left[ \frac{\partial Y}{\partial S_0} \right] \neq \frac{\partial}{\partial S_0} \mathbb{E}[Y].$$ # Therefore, the method cannot be used to calculate gamma of european call option. # On the other hand, pathwise derivative estimate method for European put option gives # \begin{align*} # \Delta = \frac{\partial P}{\partial S_0} & = \mathbb{E} \left[ -e^{-rT} 1_{\{S_T K, ST <= K], [1, 0]) payoff = dpayoff_dS0 * ST / S0 call_greeks.loc['delta', 'Pathwise'] = monte_carlo(payoff) call_greeks.loc['delta', 'Pathwise Abs err'] = np.abs(call_greeks.loc['delta', 'formula'] - call_greeks.loc['delta', 'Pathwise']) # print('Analytical delta: ', greeks.delta('call')) # print('Pathwise method delta: ' , monte_carlo(payoff)) # print('abs difference:', np.abs(greeks.delta('call') - monte_carlo(payoff))) # pathwise estimate for vega of European call option d1_similar = (np.log( ST / S0 ) - (r + 0.5 * sigma**2) * T) / (sigma) payoff = dpayoff_dS0 * d1_similar * ST call_greeks.loc['vega', 'Pathwise'] = monte_carlo(payoff) call_greeks.loc['vega', 'Pathwise Abs err'] = np.abs(call_greeks.loc['vega', 'formula'] - call_greeks.loc['vega', 'Pathwise']) # print('Analytical vega: ', greeks.vega()) # print('Pathwise method vega: ' , monte_carlo(payoff)) # print('abs difference:', np.abs(greeks.vega() - monte_carlo(payoff))) # pathwise estimate for delta of European put option dpayoff_dS0_put = - np.exp(-r * T) * np.piecewise(ST, [ST > K, ST <= K], [0, 1]) payoff = dpayoff_dS0_put * ST / S0 put_greeks.loc['delta', 'Pathwise'] = monte_carlo(payoff) put_greeks.loc['delta', 'Pathwise Abs err'] = np.abs(put_greeks.loc['delta', 'formula'] - put_greeks.loc['delta', 'Pathwise']) # print('Analytical delta: ', greeks.delta('put')) # print('Pathwise method delta: ' , monte_carlo(payoff)) # print('abs difference:', np.abs(greeks.delta('put') - monte_carlo(payoff))) # pathwise estimate for vega for European put option payoff = dpayoff_dS0_put * d1_similar * ST put_greeks.loc['vega', 'Pathwise'] = monte_carlo(payoff) put_greeks.loc['vega', 'Pathwise Abs err'] = np.abs(put_greeks.loc['vega', 'formula'] - put_greeks.loc['vega', 'Pathwise']) # print('Analytical vega: ', greeks.vega()) # print('Pathwise method vega: ' , monte_carlo(payoff)) # print('abs difference:', np.abs(greeks.vega() - monte_carlo(payoff))) # In[15]: call_greeks # In[16]: put_greeks # Recall that likelihood ratio method proposes that # $$\Delta = \frac{d}{d S(0)}\mathbb{E} [e^{-rT} (S_T-K)^+] = \mathbb{E} \left[ e^{-rT}(S_T-K)^+ \left( \frac{ \ln \left( \frac{S_T}{S_0} \right) - (r - \frac{1}{2}\sigma^2)T }{ S_0\sigma^2 T} \right) \right].$$ # In[19]: # (iv) likelihood ratio method S0 = 120 K = 100 r = 0.05 d = 0 sigma = 0.2 T = 1 num_steps = 100 num_paths = 17 ST = GBM_fd(S0, r, d, sigma, T, num_steps, 2**num_paths, plot = False, seed = None) xi = (np.log( ST / S0 ) - (r - 0.5 * sigma**2) * T) / (S0 * sigma**2 * T) payoff = np.exp(-r * T) * np.maximum(ST - K,0) * xi print('Analytical delta: ', greeks.delta('call')) print('Likelihood ratio method delta: ' , monte_carlo(payoff)) print('abs Difference: ' , np.abs(greeks.delta('call') - monte_carlo(payoff)))