!pip install datasets evaluate transformers[sentencepiece] from transformers import pipeline classifier = pipeline("sentiment-analysis") classifier( [ "I've been waiting for a HuggingFace course my whole life.", "I hate this so much!", ] ) from transformers import AutoTokenizer checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(checkpoint) raw_inputs = [ "I've been waiting for a HuggingFace course my whole life.", "I hate this so much!", ] inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="tf") print(inputs) from transformers import TFAutoModel checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" model = TFAutoModel.from_pretrained(checkpoint) outputs = model(inputs) print(outputs.last_hidden_state.shape) from transformers import TFAutoModelForSequenceClassification checkpoint = "distilbert-base-uncased-finetuned-sst-2-english" model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint) outputs = model(inputs) print(outputs.logits.shape) print(outputs.logits) import tensorflow as tf predictions = tf.math.softmax(outputs.logits, axis=-1) print(predictions) model.config.id2label