# Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git #@title from IPython.display import HTML HTML('') from datasets import load_dataset dataset = load_dataset("yelp_review_full") dataset[100] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = dataset.map(tokenize_function, batched=True) small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) #@title from IPython.display import HTML HTML('') from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) from transformers import TrainingArguments training_args = TrainingArguments(output_dir="test_trainer") import numpy as np from datasets import load_metric metric = load_metric("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) from transformers import TrainingArguments training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch") trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) trainer.train() #@title from IPython.display import HTML HTML('') from transformers import DefaultDataCollator data_collator = DefaultDataCollator(return_tensors="tf") tf_train_dataset = small_train_dataset.to_tf_dataset( columns=["attention_mask", "input_ids", "token_type_ids"], label_cols="labels", shuffle=True, collate_fn=data_collator, batch_size=8, ) tf_validation_dataset = small_eval_dataset.to_tf_dataset( columns=["attention_mask", "input_ids", "token_type_ids"], label_cols="labels", shuffle=False, collate_fn=data_collator, batch_size=8, ) import tensorflow as tf from transformers import TFAutoModelForSequenceClassification model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=tf.metrics.SparseCategoricalAccuracy(), ) model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3) #@title from IPython.display import HTML HTML('') del model del pytorch_model del trainer torch.cuda.empty_cache() small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) from torch.utils.data import DataLoader train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8) eval_dataloader = DataLoader(small_eval_dataset, batch_size=8) from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5) from torch.optim import AdamW optimizer = AdamW(model.parameters(), lr=5e-5) from transformers import get_scheduler num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler( name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps ) import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) from tqdm.auto import tqdm progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) metric = load_metric("accuracy") model.eval() for batch in eval_dataloader: batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) metric.add_batch(predictions=predictions, references=batch["labels"]) metric.compute()