# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
#@title
from IPython.display import HTML
HTML('')
from datasets import load_dataset
dataset = load_dataset("yelp_review_full")
dataset[100]
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
#@title
from IPython.display import HTML
HTML('')
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
from transformers import TrainingArguments
training_args = TrainingArguments(output_dir="test_trainer")
import numpy as np
from datasets import load_metric
metric = load_metric("accuracy")
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
from transformers import TrainingArguments
training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
trainer = Trainer(
model=model,
args=training_args,
train_dataset=small_train_dataset,
eval_dataset=small_eval_dataset,
compute_metrics=compute_metrics,
)
trainer.train()
#@title
from IPython.display import HTML
HTML('')
from transformers import DefaultDataCollator
data_collator = DefaultDataCollator(return_tensors="tf")
tf_train_dataset = small_train_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols="labels",
shuffle=True,
collate_fn=data_collator,
batch_size=8,
)
tf_validation_dataset = small_eval_dataset.to_tf_dataset(
columns=["attention_mask", "input_ids", "token_type_ids"],
label_cols="labels",
shuffle=False,
collate_fn=data_collator,
batch_size=8,
)
import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification
model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
model.compile(
optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=tf.metrics.SparseCategoricalAccuracy(),
)
model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3)
#@title
from IPython.display import HTML
HTML('')
del model
del pytorch_model
del trainer
torch.cuda.empty_cache()
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
from torch.utils.data import DataLoader
train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8)
eval_dataloader = DataLoader(small_eval_dataset, batch_size=8)
from transformers import AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
from torch.optim import AdamW
optimizer = AdamW(model.parameters(), lr=5e-5)
from transformers import get_scheduler
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
name="linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps
)
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
from tqdm.auto import tqdm
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
metric = load_metric("accuracy")
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
metric.compute()