#@title from IPython.display import HTML HTML('') ! pip install datasets transformers[sentencepiece] from datasets import load_dataset data_files = "https://the-eye.eu/public/AI/pile_preliminary_components/PUBMED_title_abstracts_2019_baseline.jsonl.zst" large_dataset = load_dataset("json", data_files=data_files, split="train") size_gb = large_dataset.dataset_size / (1024 ** 3) print(f"Dataset size (cache file) : {size_gb:.2f} GB") import psutil # Process.memory_info is expressed in bytes, so convert to megabytes print(f"RAM used: {psutil.Process().memory_info().rss / (1024 * 1024):.2f} MB") import timeit code_snippet = """batch_size = 1000 for idx in range(0, len(large_dataset), batch_size): _ = large_dataset[idx:idx + batch_size] """ time = timeit.timeit(stmt=code_snippet, number=1, globals=globals()) print( f"Iterated over {len(large_dataset)} examples (about {size_gb:.1f} GB) in " f"{time:.1f}s, i.e. {size_gb/time:.3f} GB/s" ) large_dataset_streamed = load_dataset( "json", data_files=data_files, split="train", streaming=True) next(iter(large_dataset_streamed)) type(large_dataset_streamed) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") tokenized_dataset = large_dataset_streamed.map(lambda x: tokenizer(x["text"])) next(iter(tokenized_dataset)) # Select the first 5 examples dataset_head = large_dataset_streamed.take(5) list(dataset_head) # Skip the first 1,000 examples and include the rest in the training set train_dataset = large_dataset_streamed.skip(1000) # Take the first 1,000 examples for the validation set validation_dataset = large_dataset_streamed.take(1000)