#@title from IPython.display import HTML HTML('') ! pip install datasets transformers[sentencepiece] from transformers import AutoTokenizer checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) sequences = [ "I've been waiting for a HuggingFace course my whole life.", "This course is amazing!", ] batch = tokenizer(sequences, padding=True, truncation=True, return_tensors="tf") from transformers import AutoTokenizer checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) tokenizer("My name is Sylvain.", "I work at Hugging Face.") from transformers import AutoTokenizer checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) tokenizer( ["My name is Sylvain.", "Going to the cinema."], ["I work at Hugging Face.", "This movie is great."], padding=True ) from transformers import TFAutoModelForSequenceClassification, AutoTokenizer checkpoint = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(checkpoint) batch = tokenizer( ["My name is Sylvain.", "Going to the cinema."], ["I work at Hugging Face.", "This movie is great."], padding=True, return_tensors="tf", ) model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint) outputs = model(**batch)