#@title from IPython.display import HTML HTML('') ! pip install datasets transformers[sentencepiece] from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") inputs = tokenizer("Let's try to tokenize!") print(inputs["input_ids"]) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") tokens = tokenizer.tokenize("Let's try to tokenize!") print(tokens) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("albert-base-v1") tokens = tokenizer.tokenize("Let's try to tokenize!") print(tokens) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") tokens = tokenizer.tokenize("Let's try to tokenize!") input_ids = tokenizer.convert_tokens_to_ids(tokens) print(input_ids) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") tokens = tokenizer.tokenize("Let's try to tokenize!") input_ids = tokenizer.convert_tokens_to_ids(tokens) final_inputs = tokenizer.prepare_for_model(input_ids) print(final_inputs["input_ids"]) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") inputs = tokenizer("Let's try to tokenize!") print(tokenizer.decode(inputs["input_ids"])) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("roberta-base") inputs = tokenizer("Let's try to tokenize!") print(tokenizer.decode(inputs["input_ids"])) from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") inputs = tokenizer("Let's try to tokenize!") print(inputs)