#@title
from IPython.display import HTML
HTML('')
! pip install datasets transformers[sentencepiece]
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
classifier([
"I've been waiting for a HuggingFace course my whole life.",
"I hate this so much!"
])
from transformers import AutoTokenizer
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
raw_inputs = [
"I've been waiting for a HuggingFace course my whole life.",
"I hate this so much!",
]
inputs = tokenizer(raw_inputs, padding=True, truncation=True, return_tensors="tf")
print(inputs)
from transformers import TFAutoModel
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = TFAutoModel.from_pretrained(checkpoint)
outputs = model(inputs)
print(outputs.last_hidden_state.shape)
from transformers import TFAutoModelForSequenceClassification
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
model = TFAutoModelForSequenceClassification.from_pretrained(checkpoint)
outputs = model(inputs)
print(outputs.logits)
import tensorflow as tf
predictions = tf.math.softmax(outputs.logits, axis=-1)
print(predictions)
model.config.id2label