#@title from IPython.display import HTML HTML('') ! pip install datasets transformers[sentencepiece] from transformers import TFAutoModel bert_model = TFAutoModel.from_pretrained("bert-base-cased") print(type(bert_model)) gpt_model = TFAutoModel.from_pretrained("gpt2") print(type(gpt_model)) bart_model = TFAutoModel.from_pretrained("facebook/bart-base") print(type(bart_model)) from transformers import AutoConfig bert_config = AutoConfig.from_pretrained("bert-base-cased") print(type(bert_config)) gpt_config = AutoConfig.from_pretrained("gpt2") print(type(gpt_config)) bart_config = AutoConfig.from_pretrained("facebook/bart-base") print(type(bart_config)) from transformers import BertConfig bert_config = BertConfig.from_pretrained("bert-base-cased") print(type(bert_config)) from transformers import GPT2Config gpt_config = GPT2Config.from_pretrained("gpt2") print(type(gpt_config)) from transformers import BartConfig bart_config = BartConfig.from_pretrained("facebook/bart-base") print(type(bart_config)) from transformers import BertConfig bert_config = BertConfig.from_pretrained("bert-base-cased") print(bert_config) from transformers import BertConfig, TFBertModel bert_config = BertConfig.from_pretrained("bert-base-cased") bert_model = TFBertModel(bert_config) from transformers import BertConfig, TFBertModel bert_config = BertConfig.from_pretrained("bert-base-cased") bert_model = TFBertModel(bert_config) # Training code bert_model.save_pretrained("my_bert_model")