# Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git #@title from IPython.display import HTML HTML('') from huggingface_hub import notebook_login notebook_login() from datasets import load_dataset food = load_dataset("food101", split="train[:5000]") food = food.train_test_split(test_size=0.2) food["train"][0] labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label id2label[str(79)] from transformers import AutoImageProcessor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint) from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) size = ( image_processor.size["shortest_edge"] if "shortest_edge" in image_processor.size else (image_processor.size["height"], image_processor.size["width"]) ) _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize]) def transforms(examples): examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] del examples["image"] return examples food = food.with_transform(transforms) from transformers import DefaultDataCollator data_collator = DefaultDataCollator() from tensorflow import keras from tensorflow.keras import layers size = (image_processor.size["height"], image_processor.size["width"]) train_data_augmentation = keras.Sequential( [ layers.RandomCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom(height_factor=0.2, width_factor=0.2), ], name="train_data_augmentation", ) val_data_augmentation = keras.Sequential( [ layers.CenterCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), ], name="val_data_augmentation", ) import numpy as np import tensorflow as tf from PIL import Image def convert_to_tf_tensor(image: Image): np_image = np.array(image) tf_image = tf.convert_to_tensor(np_image) # `expand_dims()` is used to add a batch dimension since # the TF augmentation layers operates on batched inputs. return tf.expand_dims(tf_image, 0) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" images = [ train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" images = [ val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch food["train"].set_transform(preprocess_train) food["test"].set_transform(preprocess_val) from transformers import DefaultDataCollator data_collator = DefaultDataCollator(return_tensors="tf") import evaluate accuracy = evaluate.load("accuracy") import numpy as np def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) from transformers import AutoModelForImageClassification, TrainingArguments, Trainer model = AutoModelForImageClassification.from_pretrained( checkpoint, num_labels=len(labels), id2label=id2label, label2id=label2id, ) training_args = TrainingArguments( output_dir="my_awesome_food_model", remove_unused_columns=False, evaluation_strategy="epoch", save_strategy="epoch", learning_rate=5e-5, per_device_train_batch_size=16, gradient_accumulation_steps=4, per_device_eval_batch_size=16, num_train_epochs=3, warmup_ratio=0.1, logging_steps=10, load_best_model_at_end=True, metric_for_best_model="accuracy", push_to_hub=True, ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=food["train"], eval_dataset=food["test"], tokenizer=image_processor, compute_metrics=compute_metrics, ) trainer.train() trainer.push_to_hub() from transformers import create_optimizer batch_size = 16 num_epochs = 5 num_train_steps = len(food["train"]) * num_epochs learning_rate = 3e-5 weight_decay_rate = 0.01 optimizer, lr_schedule = create_optimizer( init_lr=learning_rate, num_train_steps=num_train_steps, weight_decay_rate=weight_decay_rate, num_warmup_steps=0, ) from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ) # converting our train dataset to tf.data.Dataset tf_train_dataset = food["train"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) # converting our test dataset to tf.data.Dataset tf_eval_dataset = food["test"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) from tensorflow.keras.losses import SparseCategoricalCrossentropy loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss) from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) push_to_hub_callback = PushToHubCallback( output_dir="food_classifier", tokenizer=image_processor, save_strategy="no", ) callbacks = [metric_callback, push_to_hub_callback] model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks) ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0] from transformers import pipeline classifier = pipeline("image-classification", model="my_awesome_food_model") classifier(image) from transformers import AutoImageProcessor import torch image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") inputs = image_processor(image, return_tensors="pt") from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") with torch.no_grad(): logits = model(**inputs).logits predicted_label = logits.argmax(-1).item() model.config.id2label[predicted_label] from transformers import AutoImageProcessor image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier") inputs = image_processor(image, return_tensors="tf") from transformers import TFAutoModelForImageClassification model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier") logits = model(**inputs).logits predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) model.config.id2label[predicted_class_id]