#@title
from IPython.display import HTML
HTML('')
! pip install datasets transformers[sentencepiece]
from datasets import load_dataset
from transformers import AutoTokenizer, DataCollatorWithPadding
raw_datasets = load_dataset("glue", "mrpc")
checkpoint = "bert-base-cased"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
def tokenize_function(examples):
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True)
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
tokenized_datasets = tokenized_datasets.remove_columns(["sentence1", "sentence2", "idx"])
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
tokenized_datasets.set_format("torch")
data_collator = DataCollatorWithPadding(tokenizer)
from torch.utils.data import DataLoader
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, batch_size=8, collate_fn=data_collator
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"], batch_size=8, collate_fn=data_collator
)
for batch in train_dataloader:
break
print({k: v.shape for k, v in batch.items()})
from transformers import AutoModelForSequenceClassification
checkpoint = "bert-base-cased"
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
outputs = model(**batch)
print(outputs.loss, outputs.logits.shape)
from transformers import AdamW
optimizer = AdamW(model.parameters(), lr=5e-5)
loss = outputs.loss
loss.backward()
optimizer.step()
# Don't forget to zero your gradients once your optimizer step is done!
optimizer.zero_grad()
from transformers import get_scheduler
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
import torch
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
print(device)
optimizer = AdamW(model.parameters(), lr=5e-5)
from tqdm.auto import tqdm
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
from datasets import load_metric
metric= load_metric("glue", "mrpc")
model.eval()
for batch in eval_dataloader:
batch = {k: v.to(device) for k, v in batch.items()}
with torch.no_grad():
outputs = model(**batch)
logits = outputs.logits
predictions = torch.argmax(logits, dim=-1)
metric.add_batch(predictions=predictions, references=batch["labels"])
metric.compute()