# Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git #@title from IPython.display import HTML HTML('') from datasets import load_dataset raw_datasets = load_dataset("imdb") from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") inputs = tokenizer(sentences, padding="max_length", truncation=True) def tokenize_function(examples): return tokenizer(examples["text"], padding="max_length", truncation=True) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) full_train_dataset = tokenized_datasets["train"] full_eval_dataset = tokenized_datasets["test"] #@title from IPython.display import HTML HTML('') from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2) from transformers import TrainingArguments training_args = TrainingArguments("test_trainer") from transformers import Trainer trainer = Trainer(model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset) trainer.train() import numpy as np from datasets import load_metric metric = load_metric("accuracy") def compute_metrics(eval_pred): logits, labels = eval_pred predictions = np.argmax(logits, axis=-1) return metric.compute(predictions=predictions, references=labels) trainer = Trainer( model=model, args=training_args, train_dataset=small_train_dataset, eval_dataset=small_eval_dataset, compute_metrics=compute_metrics, ) trainer.evaluate() from transformers import TrainingArguments training_args = TrainingArguments("test_trainer", evaluation_strategy="epoch") #@title from IPython.display import HTML HTML('') import tensorflow as tf from transformers import TFAutoModelForSequenceClassification model = TFAutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2) tf_train_dataset = small_train_dataset.remove_columns(["text"]).with_format("tensorflow") tf_eval_dataset = small_eval_dataset.remove_columns(["text"]).with_format("tensorflow") train_features = {x: tf_train_dataset[x] for x in tokenizer.model_input_names} train_tf_dataset = tf.data.Dataset.from_tensor_slices((train_features, tf_train_dataset["label"])) train_tf_dataset = train_tf_dataset.shuffle(len(tf_train_dataset)).batch(8) eval_features = {x: tf_eval_dataset[x] for x in tokenizer.model_input_names} eval_tf_dataset = tf.data.Dataset.from_tensor_slices((eval_features, tf_eval_dataset["label"])) eval_tf_dataset = eval_tf_dataset.batch(8) model.compile( optimizer=tf.keras.optimizers.Adam(learning_rate=5e-5), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=tf.metrics.SparseCategoricalAccuracy(), ) model.fit(train_tf_dataset, validation_data=eval_tf_dataset, epochs=3) from transformers import AutoModelForSequenceClassification model.save_pretrained("my_imdb_model") pytorch_model = AutoModelForSequenceClassification.from_pretrained("my_imdb_model", from_tf=True) #@title from IPython.display import HTML HTML('') del model del pytorch_model del trainer torch.cuda.empty_cache() tokenized_datasets = tokenized_datasets.remove_columns(["text"]) tokenized_datasets = tokenized_datasets.rename_column("label", "labels") tokenized_datasets.set_format("torch") small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000)) small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000)) from torch.utils.data import DataLoader train_dataloader = DataLoader(small_train_dataset, shuffle=True, batch_size=8) eval_dataloader = DataLoader(small_eval_dataset, batch_size=8) from transformers import AutoModelForSequenceClassification model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2) from transformers import AdamW optimizer = AdamW(model.parameters(), lr=5e-5) from transformers import get_scheduler num_epochs = 3 num_training_steps = num_epochs * len(train_dataloader) lr_scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=num_training_steps) import torch device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) from tqdm.auto import tqdm progress_bar = tqdm(range(num_training_steps)) model.train() for epoch in range(num_epochs): for batch in train_dataloader: batch = {k: v.to(device) for k, v in batch.items()} outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) metric = load_metric("accuracy") model.eval() for batch in eval_dataloader: batch = {k: v.to(device) for k, v in batch.items()} with torch.no_grad(): outputs = model(**batch) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) metric.add_batch(predictions=predictions, references=batch["labels"]) metric.compute()