# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
#@title
from IPython.display import HTML
HTML('')
from transformers import pipeline
classifier = pipeline("sentiment-analysis")
classifier("We are very happy to show you the 🤗 Transformers library.")
results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."])
for result in results:
print(f"label: {result['label']}, with score: {round(result['score'], 4)}")
from transformers import pipeline
speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=0)
import datasets
dataset = datasets.load_dataset("superb", name="asr", split="test")
from transformers.pipelines.base import KeyDataset
from tqdm.auto import tqdm
for out in tqdm(speech_recognizer(KeyDataset(dataset, "file"))):
print(out)
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
#@title
from IPython.display import HTML
HTML('')
from transformers import AutoTokenizer
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
tokenizer = AutoTokenizer.from_pretrained(model_name)
encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.")
print(encoding)
pt_batch = tokenizer(
["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
padding=True,
truncation=True,
max_length=512,
return_tensors="pt",
)
tf_batch = tokenizer(
["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."],
padding=True,
truncation=True,
max_length=512,
return_tensors="tf",
)
from transformers import AutoModelForSequenceClassification
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
from transformers import TFAutoModelForSequenceClassification
model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
pt_outputs = pt_model(**pt_batch)
tf_outputs = tf_model(tf_batch)
from torch import nn
pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
print(pt_predictions)
import tensorflow as tf
tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
print(tf_predictions)
pt_save_directory = "./pt_save_pretrained"
tokenizer.save_pretrained(pt_save_directory)
pt_model.save_pretrained(pt_save_directory)
tf_save_directory = "./tf_save_pretrained"
tokenizer.save_pretrained(tf_save_directory)
tf_model.save_pretrained(tf_save_directory)
pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
from transformers import AutoModel
tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
pt_model = AutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
from transformers import TFAutoModel
tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
tf_model = TFAutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)