#!/usr/bin/env python # coding: utf-8 # # Elliptic PDE: Radially Symmetric Singular Solution # Copyright (C) 2010-2020 Luke Olson
# Copyright (C) 2020 Andreas Kloeckner # #
# MIT License # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. #
# # ----- # # Poisson Problem: #
Given open domain $\Omega \subset \mathbb{R}^2$
# $$ -\nabla \cdot \nabla u = f(x)\quad \text{in}\, \Omega $$ # $$ u = g(x)\quad \text{on}\, \partial\Omega $$ # Let: # $$ f(x) = \delta(x) $$ # $\delta(x)$ is the Dirac delta function. This problem describes a unit charge at the origin. # ## Solution # # Potential due to point charge: # $$ u(x,y) = -\frac{1}{2\pi}\ln(r) $$ # #
$r = \sqrt{x^2+y^2}$, the distance to the origin.
# In[18]: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm import math import sympy as sym sym.init_printing() # ## Set up Grid # In[19]: X = np.arange(-10, 10, 0.2) Y = np.arange(-10, 10, 0.2) X, Y = np.meshgrid(X, Y) # ## Solution # In[20]: r = np.sqrt(X**2 + Y**2) Z = -np.log(r)/(2*math.pi) # ## Check Symbolically # In[21]: sx = sym.Symbol("x") sy = sym.Symbol("y") sr = sym.sqrt(sx**2 + sy**2) ssol = sym.log(sr) sym.simplify(sym.diff(ssol, sx, 2) + sym.diff(ssol, sy, 2)) # ## Plot # In[23]: fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') #ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, # linewidth=0, antialiased=False) ax.plot_wireframe(X, Y, Z, linewidth=0.2) #ax.set_zlim(-1.0, 1.0) #plt.show() # Given $C\log(r)$ as the *free-space Green's function*, can we construct the solution to the PDE with a more general $f$?