#!/usr/bin/env python # coding: utf-8 # # Parallel Monto-Carlo options pricing # This notebook shows how to use `IPython.parallel` to do Monte-Carlo options pricing in parallel. We will compute the price of a large number of options for different strike prices and volatilities. # ## Problem setup # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt # In[2]: import sys import time from IPython.parallel import Client import numpy as np # Here are the basic parameters for our computation. # In[3]: price = 100.0 # Initial price rate = 0.05 # Interest rate days = 260 # Days to expiration paths = 10000 # Number of MC paths n_strikes = 6 # Number of strike values min_strike = 90.0 # Min strike price max_strike = 110.0 # Max strike price n_sigmas = 5 # Number of volatility values min_sigma = 0.1 # Min volatility max_sigma = 0.4 # Max volatility # In[4]: strike_vals = np.linspace(min_strike, max_strike, n_strikes) sigma_vals = np.linspace(min_sigma, max_sigma, n_sigmas) # In[5]: print "Strike prices: ", strike_vals print "Volatilities: ", sigma_vals # ## Monte-Carlo option pricing function # The following function computes the price of a single option. It returns the call and put prices for both European and Asian style options. # In[6]: def price_option(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000): """ Price European and Asian options using a Monte Carlo method. Parameters ---------- S : float The initial price of the stock. K : float The strike price of the option. sigma : float The volatility of the stock. r : float The risk free interest rate. days : int The number of days until the option expires. paths : int The number of Monte Carlo paths used to price the option. Returns ------- A tuple of (E. call, E. put, A. call, A. put) option prices. """ import numpy as np from math import exp,sqrt h = 1.0/days const1 = exp((r-0.5*sigma**2)*h) const2 = sigma*sqrt(h) stock_price = S*np.ones(paths, dtype='float64') stock_price_sum = np.zeros(paths, dtype='float64') for j in range(days): growth_factor = const1*np.exp(const2*np.random.standard_normal(paths)) stock_price = stock_price*growth_factor stock_price_sum = stock_price_sum + stock_price stock_price_avg = stock_price_sum/days zeros = np.zeros(paths, dtype='float64') r_factor = exp(-r*h*days) euro_put = r_factor*np.mean(np.maximum(zeros, K-stock_price)) asian_put = r_factor*np.mean(np.maximum(zeros, K-stock_price_avg)) euro_call = r_factor*np.mean(np.maximum(zeros, stock_price-K)) asian_call = r_factor*np.mean(np.maximum(zeros, stock_price_avg-K)) return (euro_call, euro_put, asian_call, asian_put) # We can time a single call of this function using the `%timeit` magic: # In[7]: get_ipython().run_line_magic('timeit', '-n1 -r1 print price_option(S=100.0, K=100.0, sigma=0.25, r=0.05, days=260, paths=10000)') # ## Parallel computation across strike prices and volatilities # The Client is used to setup the calculation and works with all engines. # In[8]: rc = Client() # A `LoadBalancedView` is an interface to the engines that provides dynamic load # balancing at the expense of not knowing which engine will execute the code. # In[9]: view = rc.load_balanced_view() # Submit tasks for each (strike, sigma) pair. Again, we use the `%%timeit` magic to time the entire computation. # In[16]: async_results = [] # In[17]: get_ipython().run_cell_magic('timeit', '-n1 -r1', '\nfor strike in strike_vals:\n for sigma in sigma_vals:\n # This line submits the tasks for parallel computation.\n ar = view.apply_async(price_option, price, strike, sigma, rate, days, paths)\n async_results.append(ar)\n\nrc.wait(async_results) # Wait until all tasks are done.\n') # In[18]: len(async_results) # ## Process and visualize results # Retrieve the results using the `get` method: # In[19]: results = [ar.get() for ar in async_results] # Assemble the result into a structured NumPy array. # In[20]: prices = np.empty(n_strikes*n_sigmas, dtype=[('ecall',float),('eput',float),('acall',float),('aput',float)] ) for i, price in enumerate(results): prices[i] = tuple(price) prices.shape = (n_strikes, n_sigmas) # Plot the value of the European call in (volatility, strike) space. # In[21]: plt.figure() plt.contourf(sigma_vals, strike_vals, prices['ecall']) plt.axis('tight') plt.colorbar() plt.title('European Call') plt.xlabel("Volatility") plt.ylabel("Strike Price") # Plot the value of the Asian call in (volatility, strike) space. # In[22]: plt.figure() plt.contourf(sigma_vals, strike_vals, prices['acall']) plt.axis('tight') plt.colorbar() plt.title("Asian Call") plt.xlabel("Volatility") plt.ylabel("Strike Price") # Plot the value of the European put in (volatility, strike) space. # In[23]: plt.figure() plt.contourf(sigma_vals, strike_vals, prices['eput']) plt.axis('tight') plt.colorbar() plt.title("European Put") plt.xlabel("Volatility") plt.ylabel("Strike Price") # Plot the value of the Asian put in (volatility, strike) space. # In[24]: plt.figure() plt.contourf(sigma_vals, strike_vals, prices['aput']) plt.axis('tight') plt.colorbar() plt.title("Asian Put") plt.xlabel("Volatility") plt.ylabel("Strike Price")