#!/usr/bin/env python # coding: utf-8 # # Distance-regular graph parameter checking in Sage # # [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1418410.svg)](https://doi.org/10.5281/zenodo.1418410) # # A Sage package for checking the feasibility of distance-regular graph parameter sets. # A more detailed description, along with some results, is available in a [manuscript](https://arxiv.org/abs/1803.10797) currently available on arXiv. # ## Contents # # ### `drg` # # The `drg` folder contains the package source. After you make sure that Sage sees this folder, you can import it as a Python module. # In[1]: import drg p = drg.DRGParameters([80, 63, 12], [1, 12, 60]) p.check_feasible() # You can also give an intersection array with parameters. # In[2]: r = var("r") fam = drg.DRGParameters([2*r^2*(2*r + 1), (2*r - 1)*(2*r^2 + r + 1), 2*r^2], [1, 2*r^2 , r*(4*r^2 - 1)]) fam.check_feasible() # In[3]: fam1 = fam.subs(r == 1) fam1 # In[4]: fam2 = fam.subs(r == 2) fam2 # In[5]: fam2.check_feasible() # ### `jupyter` # # A collection of sample Jupyter notebooks giving some nonexistence results. # # * [Demo.ipynb](jupyter/Demo.ipynb) - demonstration of the `sage-drg` package # * [DRG-135-128-16-1-16-120.ipynb](jupyter/DRG-135-128-16-1-16-120.ipynb) - proof of nonexistence of a distance-regular graph with intersection array $\{135, 128, 16; 1, 16, 120\}$ with $1360$ vertices # * [DRG-234-165-12-1-30-198.ipynb](jupyter/DRG-234-165-12-1-30-198.ipynb) - proof of nonexistence of a distance-regular graph with intersection array $\{234, 165, 12; 1, 30, 198\}$ with $1600$ vertices # * [DRG-55-54-50-35-10-bipartite.ipynb](jupyter/DRG-55-54-50-35-10-bipartite.ipynb) - proof of nonexistence of a bipartite distance-regular graph with intersection array $\{55, 54, 50, 35, 10; 1, 5, 20, 45, 55\}$ with $3500$ vertices # * [DRG-d3-2param.ipynb](jupyter/DRG-d3-2param.ipynb) - proof of nonexistence of a family of distance-regular graphs with intersection arrays $\{(2r+1)(4r+1)(4t-1), 8r(4rt-r+2t), (r+t)(4r+1); 1, (r+t)(4r+1), 4r(2r+1)(4t-1)\}$ ($r, t \ge 1$) # * [QPoly-d4-tight4design.ipynb](jupyter/QPoly-d4-tight4design.ipynb) - proof of nonexistence of a $Q$-polynomial association scheme with Krein array $\{r^2-4, r^2-9, 10, 1; 1, 2, r^2-9, r^2-4\}$ ($r \ne 9$) # ## Citing # # If you use `sage-drg` in your research, please cite both the manuscript and the repository: # # * J. Vidali. Using symbolic computation to prove nonexistence of distance-regular graphs, 2018. [`arXiv:1803.10797`](http://arxiv.org/abs/1803.10797). # # * J. Vidali. `jaanos/sage-drg`: `sage-drg` v0.8, 2018. [`https://github.com/jaanos/sage-drg/`](https://github.com/jaanos/sage-drg/), [`doi:10.5281/zenodo.1418410`](http://dx.doi.org/10.5281/zenodo.1418410). # # ```latex # @other {v18a, # AUTHOR = {Vidali, Jano\v{s}}, # TITLE = {Using symbolic computation to prove nonexistence of distance-regular graphs}, # NOTE = {\href{http://arxiv.org/abs/1803.10797}{\texttt{arXiv:1803.10797}}}, # YEAR = {2018}, # } # # @software{v18b, # AUTHOR = {Vidali, Jano\v{s}}, # TITLE = {{\tt jaanos/sage-drg}: {\tt sage-drg} v0.8}, # NOTE = {\url{https://github.com/jaanos/sage-drg/}, # \href{http://dx.doi.org/10.5281/zenodo.1418410}{\texttt{10.5281/zenodo.1418410}}}, # YEAR = {2018}, # } # ``` # # Additionally, `sage-drg` has been used in the following research: # # * A. Gavrilyuk, S. Suda and J. Vidali. On tight 4-designs in Hamming association schemes, 2018. [`arXiv:1809.07553`](http://arxiv.org/abs/1809.07553). # # If you would like your research to be listed here, feel free to open an issue or pull request.