%pip install -q bqplot import numpy as np from bqplot import * np.random.seed(0) n = 100 x = list(range(n)) y = np.cumsum(np.random.randn(n)) + 100.0 sc_x = LinearScale() sc_y = LinearScale() lines = Lines(x=x, y=y, scales={"x": sc_x, "y": sc_y}) ax_x = Axis(scale=sc_x, label="Index") ax_y = Axis(scale=sc_y, orientation="vertical", label="lines") Figure(marks=[lines], axes=[ax_x, ax_y], title="Lines") lines.colors = ["green"] lines.fill = "bottom" lines.marker = "circle" n = 100 x = list(range(n)) y = np.cumsum(np.random.randn(n)) sc_x = LinearScale() sc_y = LinearScale() bars = Bars(x=x, y=y, scales={"x": sc_x, "y": sc_y}) ax_x = Axis(scale=sc_x, label="Index") ax_y = Axis(scale=sc_y, orientation="vertical", label="bars") Figure(marks=[bars], axes=[ax_x, ax_y], title="Bars", animation_duration=1000) bars.y = np.cumsum(np.random.randn(n)) import numpy as np from bqplot import * np.random.seed(0) y1 = np.cumsum(np.random.randn(150)) + 100.0 y2 = np.cumsum(np.random.randn(150)) + 100.0 y3 = np.cumsum(np.random.randn(150)) + 100.0 y4 = np.cumsum(np.random.randn(150)) + 100.0 sc_x = LinearScale() sc_y = LinearScale() lines = Lines(x=np.arange(len(y1)), y=[y1, y2, y3, y4], scales={"x": sc_x, "y": sc_y}) ax_x = Axis(scale=sc_x, label="Index") ax_y = Axis(scale=sc_y, orientation="vertical", label="lines") Figure(marks=[lines], axes=[ax_x, ax_y], title="Lines")