from __future__ import print_function !pip install q keras==2.3.1 import datetime import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras import backend as K now = datetime.datetime.now batch_size = 128 num_classes = 5 epochs = 5 # input image dimensions img_rows, img_cols = 28, 28 # number of convolutional filters to use filters = 32 # size of pooling area for max pooling pool_size = 2 # convolution kernel size kernel_size = 3 K.backend() if K.image_data_format() == 'channels_first': input_shape = (1, img_rows, img_cols) else: input_shape = (img_rows, img_cols, 1) def train_model(model, train, test, num_classes): x_train = train[0].reshape((train[0].shape[0],) + input_shape) x_test = test[0].reshape((test[0].shape[0],) + input_shape) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(train[1], num_classes) y_test = keras.utils.to_categorical(test[1], num_classes) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) t = now() model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) print('Training time: %s' % (now() - t)) score = model.evaluate(x_test, y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy:', score[1]) # the data, split between train and test sets (x_train, y_train), (x_test, y_test) = mnist.load_data() # create two datasets one with digits below 5 and one with 5 and above x_train_lt5 = x_train[y_train < 5] y_train_lt5 = y_train[y_train < 5] x_test_lt5 = x_test[y_test < 5] y_test_lt5 = y_test[y_test < 5] x_train_gte5 = x_train[y_train >= 5] y_train_gte5 = y_train[y_train >= 5] - 5 x_test_gte5 = x_test[y_test >= 5] y_test_gte5 = y_test[y_test >= 5] - 5 # define two groups of layers: feature (convolutions) and classification (dense) feature_layers = [ Conv2D(filters, kernel_size, padding='valid', input_shape=input_shape), Activation('relu'), Conv2D(filters, kernel_size), Activation('relu'), MaxPooling2D(pool_size=pool_size), Dropout(0.25), Flatten(), ] classification_layers = [ Dense(128), Activation('relu'), Dropout(0.5), Dense(num_classes), Activation('softmax') ] # create complete model model = Sequential(feature_layers + classification_layers) from keras.utils import plot_model #plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) plot_model(model, show_shapes=True, show_layer_names=True) # train model for 5-digit classification [0..4] train_model(model, (x_train_lt5, y_train_lt5), (x_test_lt5, y_test_lt5), num_classes) # freeze feature layers and rebuild model for l in feature_layers: l.trainable = False # transfer: train dense layers for new classification task [5..9] train_model(model, (x_train_gte5, y_train_gte5), (x_test_gte5, y_test_gte5), num_classes)