#!/usr/bin/env python # coding: utf-8 # Deep Learning # ============= # # Assignment 4 # ------------ # # Previously in `2_fullyconnected.ipynb` and `3_regularization.ipynb`, we trained fully connected networks to classify [notMNIST](http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html) characters. # # The goal of this assignment is make the neural network convolutional. # In[1]: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range # In[2]: pickle_file = 'notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # Reformat into a TensorFlow-friendly shape: # - convolutions need the image data formatted as a cube (width by height by #channels) # - labels as float 1-hot encodings. # In[3]: image_size = 28 num_labels = 10 num_channels = 1 # grayscale import numpy as np def reformat(dataset, labels): dataset = dataset.reshape( (-1, image_size, image_size, num_channels)).astype(np.float32) labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) return dataset, labels train_dataset, train_labels = reformat(train_dataset, train_labels) valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) test_dataset, test_labels = reformat(test_dataset, test_labels) print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) # In[4]: def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0]) # Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes. # In[5]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) layer3_weights = tf.Variable(tf.truncated_normal( [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data): conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer1_biases) conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME') hidden = tf.nn.relu(conv + layer2_biases) shape = hidden.get_shape().as_list() reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=tf_train_labels, logits=logits)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) # In[7]: num_steps = 1001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) # --- # Problem 1 # --------- # # The convolutional model above uses convolutions with stride 2 to reduce the dimensionality. Replace the strides by a max pooling operation (`nn.max_pool()`) of stride 2 and kernel size 2. # # --- # In[8]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) layer3_weights = tf.Variable(tf.truncated_normal( [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data): conv1 = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='SAME') bias1 = tf.nn.relu(conv1 + layer1_biases) pool1 = tf.nn.max_pool(bias1, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') conv2 = tf.nn.conv2d(pool1, layer2_weights, [1, 1, 1, 1], padding='SAME') bias2 = tf.nn.relu(conv2 + layer2_biases) pool2 = tf.nn.max_pool(bias2, [1, 2, 2, 1], [1, 2, 2, 1], padding='SAME') shape = pool2.get_shape().as_list() reshape = tf.reshape(pool2, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) # In[9]: num_steps = 1001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) # --- # Problem 2 # --------- # # Try to get the best performance you can using a convolutional net. Look for example at the classic [LeNet5](http://yann.lecun.com/exdb/lenet/) architecture, adding Dropout, and/or adding learning rate decay. # # --- # The CNN below is loosely inspired by the LeNet5 architecture. # In[10]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) size3 = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2 layer3_weights = tf.Variable(tf.truncated_normal( [size3 * size3 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data): # C1 input 28 x 28 conv1 = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID') bias1 = tf.nn.relu(conv1 + layer1_biases) # S2 input 24 x 24 pool2 = tf.nn.avg_pool(bias1, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # C3 input 12 x 12 conv3 = tf.nn.conv2d(pool2, layer2_weights, [1, 1, 1, 1], padding='VALID') bias3 = tf.nn.relu(conv3 + layer2_biases) # S4 input 8 x 8 pool4 = tf.nn.avg_pool(bias3, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # F6 input 4 x 4 shape = pool4.get_shape().as_list() reshape = tf.reshape(pool4, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) return tf.matmul(hidden, layer4_weights) + layer4_biases # Training computation. logits = model(tf_train_dataset) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) # In[11]: num_steps = 20001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) # The accuracy is good, but not as good as the 3-layer network from the previous assignment. # The next version of the net uses dropout and learning rate decay: # In[13]: batch_size = 16 patch_size = 5 depth = 16 num_hidden = 64 beta_regul = 1e-3 drop_out = 0.5 graph = tf.Graph() with graph.as_default(): # Input data. tf_train_dataset = tf.placeholder( tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) global_step = tf.Variable(0) # Variables. layer1_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) layer2_weights = tf.Variable(tf.truncated_normal( [patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) size3 = ((image_size - patch_size + 1) // 2 - patch_size + 1) // 2 layer3_weights = tf.Variable(tf.truncated_normal( [size3 * size3 * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer4_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_hidden], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) layer5_weights = tf.Variable(tf.truncated_normal( [num_hidden, num_labels], stddev=0.1)) layer5_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) # Model. def model(data, keep_prob): # C1 input 28 x 28 conv1 = tf.nn.conv2d(data, layer1_weights, [1, 1, 1, 1], padding='VALID') bias1 = tf.nn.relu(conv1 + layer1_biases) # S2 input 24 x 24 pool2 = tf.nn.avg_pool(bias1, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # C3 input 12 x 12 conv3 = tf.nn.conv2d(pool2, layer2_weights, [1, 1, 1, 1], padding='VALID') bias3 = tf.nn.relu(conv3 + layer2_biases) # S4 input 8 x 8 pool4 = tf.nn.avg_pool(bias3, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # F5 input 4 x 4 shape = pool4.get_shape().as_list() reshape = tf.reshape(pool4, [shape[0], shape[1] * shape[2] * shape[3]]) hidden5 = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) # F6 drop5 = tf.nn.dropout(hidden5, keep_prob) hidden6 = tf.nn.relu(tf.matmul(hidden5, layer4_weights) + layer4_biases) drop6 = tf.nn.dropout(hidden6, keep_prob) return tf.matmul(drop6, layer5_weights) + layer5_biases # Training computation. logits = model(tf_train_dataset, drop_out) loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Optimizer. learning_rate = tf.train.exponential_decay(0.05, global_step, 1000, 0.85, staircase=True) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) # Predictions for the training, validation, and test data. train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset, 1.0)) test_prediction = tf.nn.softmax(model(tf_test_dataset, 1.0)) # In[14]: num_steps = 5001 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run( [optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 50 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy( valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) # Well, the accuracy is worst. This net has many meta parameters and I don't feel comfortable in tuning them randomly. I should probably change the depth and make it different between the layers, since it looks like the increasing number of feature maps is a key design item.