def quicksort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quicksort(left) + middle + quicksort(right) print quicksort([3,6,8,10,1,2,1]) x = 3 print x, type(x) print x + 1 # Addition; print x - 1 # Subtraction; print x * 2 # Multiplication; print x ** 2 # Exponentiation; x += 1 print x # Prints "4" x *= 2 print x # Prints "8" y = 2.5 print type(y) # Prints "" print y, y + 1, y * 2, y ** 2 # Prints "2.5 3.5 5.0 6.25" t, f = True, False print type(t) # Prints "" print t and f # Logical AND; print t or f # Logical OR; print not t # Logical NOT; print t != f # Logical XOR; hello = 'hello' # String literals can use single quotes world = "world" # or double quotes; it does not matter. print hello, len(hello) hw = hello + ' ' + world # String concatenation print hw # prints "hello world" hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting print hw12 # prints "hello world 12" s = "hello" print s.capitalize() # Capitalize a string; prints "Hello" print s.upper() # Convert a string to uppercase; prints "HELLO" print s.rjust(7) # Right-justify a string, padding with spaces; prints " hello" print s.center(7) # Center a string, padding with spaces; prints " hello " print s.replace('l', '(ell)') # Replace all instances of one substring with another; # prints "he(ell)(ell)o" print ' world '.strip() # Strip leading and trailing whitespace; prints "world" xs = [3, 1, 2] # Create a list print xs, xs[2] print xs[-1] # Negative indices count from the end of the list; prints "2" xs[2] = 'foo' # Lists can contain elements of different types print xs xs.append('bar') # Add a new element to the end of the list print xs x = xs.pop() # Remove and return the last element of the list print x, xs nums = range(5) # range is a built-in function that creates a list of integers print nums # Prints "[0, 1, 2, 3, 4]" print nums[2:4] # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]" print nums[2:] # Get a slice from index 2 to the end; prints "[2, 3, 4]" print nums[:2] # Get a slice from the start to index 2 (exclusive); prints "[0, 1]" print nums[:] # Get a slice of the whole list; prints ["0, 1, 2, 3, 4]" print nums[:-1] # Slice indices can be negative; prints ["0, 1, 2, 3]" nums[2:4] = [8, 9] # Assign a new sublist to a slice print nums # Prints "[0, 1, 8, 9, 4]" animals = ['cat', 'dog', 'monkey'] for animal in animals: print animal animals = ['cat', 'dog', 'monkey'] for idx, animal in enumerate(animals): print '#%d: %s' % (idx + 1, animal) nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) print squares nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] print squares nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] print even_squares d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data print d['cat'] # Get an entry from a dictionary; prints "cute" print 'cat' in d # Check if a dictionary has a given key; prints "True" d['fish'] = 'wet' # Set an entry in a dictionary print d['fish'] # Prints "wet" print d['monkey'] # KeyError: 'monkey' not a key of d print d.get('monkey', 'N/A') # Get an element with a default; prints "N/A" print d.get('fish', 'N/A') # Get an element with a default; prints "wet" del d['fish'] # Remove an element from a dictionary print d.get('fish', 'N/A') # "fish" is no longer a key; prints "N/A" d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] print 'A %s has %d legs' % (animal, legs) d = {'person': 2, 'cat': 4, 'spider': 8} for animal, legs in d.iteritems(): print 'A %s has %d legs' % (animal, legs) nums = [0, 1, 2, 3, 4] even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print even_num_to_square animals = {'cat', 'dog'} print 'cat' in animals # Check if an element is in a set; prints "True" print 'fish' in animals # prints "False" animals.add('fish') # Add an element to a set print 'fish' in animals print len(animals) # Number of elements in a set; animals.add('cat') # Adding an element that is already in the set does nothing print len(animals) animals.remove('cat') # Remove an element from a set print len(animals) animals = {'cat', 'dog', 'fish'} for idx, animal in enumerate(animals): print '#%d: %s' % (idx + 1, animal) # Prints "#1: fish", "#2: dog", "#3: cat" from math import sqrt print {int(sqrt(x)) for x in range(30)} d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys t = (5, 6) # Create a tuple print type(t) print d[t] print d[(1, 2)] t[0] = 1 def sign(x): if x > 0: return 'positive' elif x < 0: return 'negative' else: return 'zero' for x in [-1, 0, 1]: print sign(x) def hello(name, loud=False): if loud: print 'HELLO, %s' % name.upper() else: print 'Hello, %s!' % name hello('Bob') hello('Fred', loud=True) class Greeter: # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False): if loud: print 'HELLO, %s!' % self.name.upper() else: print 'Hello, %s' % self.name g = Greeter('Fred') # Construct an instance of the Greeter class g.greet() # Call an instance method; prints "Hello, Fred" g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!" import numpy as np a = np.array([1, 2, 3]) # Create a rank 1 array print type(a), a.shape, a[0], a[1], a[2] a[0] = 5 # Change an element of the array print a b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array print b print b.shape print b[0, 0], b[0, 1], b[1, 0] a = np.zeros((2,2)) # Create an array of all zeros print a b = np.ones((1,2)) # Create an array of all ones print b c = np.full((2,2), 7) # Create a constant array print c d = np.eye(2) # Create a 2x2 identity matrix print d e = np.random.random((2,2)) # Create an array filled with random values print e import numpy as np # Create the following rank 2 array with shape (3, 4) # [[ 1 2 3 4] # [ 5 6 7 8] # [ 9 10 11 12]] a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) # Use slicing to pull out the subarray consisting of the first 2 rows # and columns 1 and 2; b is the following array of shape (2, 2): # [[2 3] # [6 7]] b = a[:2, 1:3] print b print a[0, 1] b[0, 0] = 77 # b[0, 0] is the same piece of data as a[0, 1] print a[0, 1] # Create the following rank 2 array with shape (3, 4) a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) print a row_r1 = a[1, :] # Rank 1 view of the second row of a row_r2 = a[1:2, :] # Rank 2 view of the second row of a row_r3 = a[[1], :] # Rank 2 view of the second row of a print row_r1, row_r1.shape print row_r2, row_r2.shape print row_r3, row_r3.shape # We can make the same distinction when accessing columns of an array: col_r1 = a[:, 1] col_r2 = a[:, 1:2] print col_r1, col_r1.shape print print col_r2, col_r2.shape a = np.array([[1,2], [3, 4], [5, 6]]) # An example of integer array indexing. # The returned array will have shape (3,) and print a[[0, 1, 2], [0, 1, 0]] # The above example of integer array indexing is equivalent to this: print np.array([a[0, 0], a[1, 1], a[2, 0]]) # When using integer array indexing, you can reuse the same # element from the source array: print a[[0, 0], [1, 1]] # Equivalent to the previous integer array indexing example print np.array([a[0, 1], a[0, 1]]) # Create a new array from which we will select elements a = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) print a # Create an array of indices b = np.array([0, 2, 0, 1]) # Select one element from each row of a using the indices in b print a[np.arange(4), b] # Prints "[ 1 6 7 11]" # Mutate one element from each row of a using the indices in b a[np.arange(4), b] += 10 print a import numpy as np a = np.array([[1,2], [3, 4], [5, 6]]) bool_idx = (a > 2) # Find the elements of a that are bigger than 2; # this returns a numpy array of Booleans of the same # shape as a, where each slot of bool_idx tells # whether that element of a is > 2. print bool_idx # We use boolean array indexing to construct a rank 1 array # consisting of the elements of a corresponding to the True values # of bool_idx print a[bool_idx] # We can do all of the above in a single concise statement: print a[a > 2] x = np.array([1, 2]) # Let numpy choose the datatype y = np.array([1.0, 2.0]) # Let numpy choose the datatype z = np.array([1, 2], dtype=np.int64) # Force a particular datatype print x.dtype, y.dtype, z.dtype x = np.array([[1,2],[3,4]], dtype=np.float64) y = np.array([[5,6],[7,8]], dtype=np.float64) # Elementwise sum; both produce the array print x + y print np.add(x, y) # Elementwise difference; both produce the array print x - y print np.subtract(x, y) # Elementwise product; both produce the array print x * y print np.multiply(x, y) # Elementwise division; both produce the array # [[ 0.2 0.33333333] # [ 0.42857143 0.5 ]] print x / y print np.divide(x, y) # Elementwise square root; produces the array # [[ 1. 1.41421356] # [ 1.73205081 2. ]] print np.sqrt(x) x = np.array([[1,2],[3,4]]) y = np.array([[5,6],[7,8]]) v = np.array([9,10]) w = np.array([11, 12]) # Inner product of vectors; both produce 219 print v.dot(w) print np.dot(v, w) # Matrix / vector product; both produce the rank 1 array [29 67] print x.dot(v) print np.dot(x, v) # Matrix / matrix product; both produce the rank 2 array # [[19 22] # [43 50]] print x.dot(y) print np.dot(x, y) x = np.array([[1,2],[3,4]]) print np.sum(x) # Compute sum of all elements; prints "10" print np.sum(x, axis=0) # Compute sum of each column; prints "[4 6]" print np.sum(x, axis=1) # Compute sum of each row; prints "[3 7]" print x print x.T v = np.array([[1,2,3]]) print v print v.T # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = np.empty_like(x) # Create an empty matrix with the same shape as x # Add the vector v to each row of the matrix x with an explicit loop for i in range(4): y[i, :] = x[i, :] + v print y vv = np.tile(v, (4, 1)) # Stack 4 copies of v on top of each other print vv # Prints "[[1 0 1] # [1 0 1] # [1 0 1] # [1 0 1]]" y = x + vv # Add x and vv elementwise print y import numpy as np # We will add the vector v to each row of the matrix x, # storing the result in the matrix y x = np.array([[1,2,3], [4,5,6], [7,8,9], [10, 11, 12]]) v = np.array([1, 0, 1]) y = x + v # Add v to each row of x using broadcasting print y # Compute outer product of vectors v = np.array([1,2,3]) # v has shape (3,) w = np.array([4,5]) # w has shape (2,) # To compute an outer product, we first reshape v to be a column # vector of shape (3, 1); we can then broadcast it against w to yield # an output of shape (3, 2), which is the outer product of v and w: print np.reshape(v, (3, 1)) * w # Add a vector to each row of a matrix x = np.array([[1,2,3], [4,5,6]]) # x has shape (2, 3) and v has shape (3,) so they broadcast to (2, 3), # giving the following matrix: print x + v # Add a vector to each column of a matrix # x has shape (2, 3) and w has shape (2,). # If we transpose x then it has shape (3, 2) and can be broadcast # against w to yield a result of shape (3, 2); transposing this result # yields the final result of shape (2, 3) which is the matrix x with # the vector w added to each column. Gives the following matrix: print (x.T + w).T # Another solution is to reshape w to be a row vector of shape (2, 1); # we can then broadcast it directly against x to produce the same # output. print x + np.reshape(w, (2, 1)) # Multiply a matrix by a constant: # x has shape (2, 3). Numpy treats scalars as arrays of shape (); # these can be broadcast together to shape (2, 3), producing the # following array: print x * 2 import matplotlib.pyplot as plt %matplotlib inline # Compute the x and y coordinates for points on a sine curve x = np.arange(0, 3 * np.pi, 0.1) y = np.sin(x) # Plot the points using matplotlib plt.plot(x, y) y_sin = np.sin(x) y_cos = np.cos(x) # Plot the points using matplotlib plt.plot(x, y_sin) plt.plot(x, y_cos) plt.xlabel('x axis label') plt.ylabel('y axis label') plt.title('Sine and Cosine') plt.legend(['Sine', 'Cosine']) # Compute the x and y coordinates for points on sine and cosine curves x = np.arange(0, 3 * np.pi, 0.1) y_sin = np.sin(x) y_cos = np.cos(x) # Set up a subplot grid that has height 2 and width 1, # and set the first such subplot as active. plt.subplot(2, 1, 1) # Make the first plot plt.plot(x, y_sin) plt.title('Sine') # Set the second subplot as active, and make the second plot. plt.subplot(2, 1, 2) plt.plot(x, y_cos) plt.title('Cosine') # Show the figure. plt.show()