#!/usr/bin/env python # coding: utf-8 # # Generate Dalle Images With Conversable Agents # This notebook illustrates how to add the image generation capability to a conversable agent. # # ````{=mdx} # :::info Requirements # Some extra dependencies are needed for this notebook, which can be installed via pip: # # ```bash # pip install pyautogen[lmm] # ``` # # For more information, please refer to the [installation guide](/docs/installation/). # ::: # ```` # First, let's import all the required modules to run this example. # In[1]: import os import re from typing import Dict, Optional from PIL.Image import Image import autogen from autogen.cache import Cache from autogen.agentchat.contrib import img_utils from autogen.agentchat.contrib.capabilities import generate_images from autogen.oai import openai_utils from IPython.display import display # Let's define our LLM configs. # In[2]: gpt_config = { "config_list": [{"model": "gpt-4-turbo-preview", "api_key": os.environ["OPENAI_API_KEY"]}], "timeout": 120, "temperature": 0.7, } gpt_vision_config = { "config_list": [{"model": "gpt-4-vision-preview", "api_key": os.environ["OPENAI_API_KEY"]}], "timeout": 120, "temperature": 0.7, } dalle_config = { "config_list": [{"model": "dall-e-3", "api_key": os.environ["OPENAI_API_KEY"]}], "timeout": 120, "temperature": 0.7, } # ````{=mdx} # :::tip # Learn more about configuring LLMs for agents [here](/docs/topics/llm_configuration). # ::: # ```` # # Our system will consist of 2 main agents: # 1. Image generator agent. # 2. Critic agent. # # The image generator agent will carry a conversation with the critic, and generate images based on the critic's requests. # In[3]: CRITIC_SYSTEM_MESSAGE = """You need to improve the prompt of the figures you saw. How to create an image that is better in terms of color, shape, text (clarity), and other things. Reply with the following format: CRITICS: the image needs to improve... PROMPT: here is the updated prompt! If you have no critique or a prompt, just say TERMINATE """ # In[4]: def _is_termination_message(msg) -> bool: # Detects if we should terminate the conversation if isinstance(msg.get("content"), str): return msg["content"].rstrip().endswith("TERMINATE") elif isinstance(msg.get("content"), list): for content in msg["content"]: if isinstance(content, dict) and "text" in content: return content["text"].rstrip().endswith("TERMINATE") return False def critic_agent() -> autogen.ConversableAgent: return autogen.ConversableAgent( name="critic", llm_config=gpt_vision_config, system_message=CRITIC_SYSTEM_MESSAGE, max_consecutive_auto_reply=3, human_input_mode="NEVER", is_termination_msg=lambda msg: _is_termination_message(msg), ) def image_generator_agent() -> autogen.ConversableAgent: # Create the agent agent = autogen.ConversableAgent( name="dalle", llm_config=gpt_vision_config, max_consecutive_auto_reply=3, human_input_mode="NEVER", is_termination_msg=lambda msg: _is_termination_message(msg), ) # Add image generation ability to the agent dalle_gen = generate_images.DalleImageGenerator(llm_config=dalle_config) image_gen_capability = generate_images.ImageGeneration( image_generator=dalle_gen, text_analyzer_llm_config=gpt_config ) image_gen_capability.add_to_agent(agent) return agent # We'll define `extract_img` to help us extract the image generated by the image generator agent. # In[5]: def extract_images(sender: autogen.ConversableAgent, recipient: autogen.ConversableAgent) -> Image: images = [] all_messages = sender.chat_messages[recipient] for message in reversed(all_messages): # The GPT-4V format, where the content is an array of data contents = message.get("content", []) for content in contents: if isinstance(content, str): continue if content.get("type", "") == "image_url": img_data = content["image_url"]["url"] images.append(img_utils.get_pil_image(img_data)) if not images: raise ValueError("No image data found in messages.") return images # Start the converstion # In[6]: dalle = image_generator_agent() critic = critic_agent() img_prompt = "A happy dog wearing a shirt saying 'I Love AutoGen'. Make sure the text is clear." # img_prompt = "Ask me how I'm doing" result = dalle.initiate_chat(critic, message=img_prompt) # Let's display all the images that was generated by Dalle # In[7]: images = extract_images(dalle, critic) for image in reversed(images): display(image.resize((300, 300))) # In[ ]: