#!/usr/bin/env python # coding: utf-8 # # Calculates and plots the *NIWA SOI* # The NIWA SOI is calculated using the Troup method, where the climatological period is taken to be 1941-2010: # # Thus, if T and D are the monthly pressures at Tahiti and Darwin, respectively, and Tc and Dc the climatological monthly pressures, then: # # ``` # SOI = [ (T – Tc) – (D – Dc) ] / [ StDev (T – D) ] # ``` # So the numerator is the anomalous Tahiti-Darwin difference for the month in question, and the denominator is the standard deviation of # the Tahiti-Darwin differences for that month over the 1941-2010 climatological period. I then round the answer to the nearest tenth # (ie, 1 decimal place). # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') # ### imports # In[2]: import os import sys import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd import numpy as np from numpy import ma import urllib2 import requests from matplotlib.dates import YearLocator, MonthLocator, DateFormatter from dateutil import parser as dparser from datetime import datetime, timedelta import subprocess # ### defines a function to get the BoM SLP data for Tahiti or Darwin # In[4]: def get_BOM_MSLP(station='tahiti'): url = "ftp://ftp.bom.gov.au/anon/home/ncc/www/sco/soi/{}mslp.html".format(station) r = urllib2.urlopen(url) if r.code == 200: print("streaming MSLP data for {} successful\n".format(station)) else: print("!!! unable to stream MSLP data for {}\n".format(station)) sys.exit(1) data = r.readlines() r.close() fout = open('./{}_text'.format(station), 'w') if station == 'tahiti': data = data[15:-3] else: data = data[14:-3] fout.writelines(data) fout.close() data = pd.read_table('./{}_text'.format(station),sep='\s*', \ engine='python', na_values='*', index_col=['Year']) subprocess.Popen(["rm {}*".format(station)], shell=True, stdout=True).communicate() return data # ### set up the paths # In[5]: # figure fpath = os.path.join(os.environ['HOME'], 'operational/ICU/indices/figures') # csv file opath = os.path.join(os.environ['HOME'], 'operational/ICU/indices/data') # ### set up the plotting parameters # In[23]: years = YearLocator() months = MonthLocator() mFMT = DateFormatter('%b') yFMT = DateFormatter('\n\n%Y') mpl.rcParams['xtick.labelsize'] = 12 mpl.rcParams['ytick.labelsize'] = 12 mpl.rcParams['axes.titlesize'] = 14 mpl.rcParams['xtick.direction'] = 'out' mpl.rcParams['ytick.direction'] = 'out' mpl.rcParams['xtick.major.size'] = 5 mpl.rcParams['ytick.major.size'] = 5 mpl.rcParams['xtick.minor.size'] = 2 # ### set up proxies # In[8]: proxies = {} #proxies['http'] = 'url:port' #proxies['https'] = 'url:port' #proxies['ftp'] = 'url:port' ### use urllib2 to open remote http files urllib2proxy = urllib2.ProxyHandler(proxies) opener = urllib2.build_opener(urllib2proxy) urllib2.install_opener(opener) # ### preliminary: wet get the date for which the next update is likely to be made available # In[9]: url = "http://www.bom.gov.au/climate/current/soihtm1.shtml" r = requests.get(url, proxies=proxies) urlcontent = r.content date_update = urlcontent[urlcontent.find("Next SOI update expected:"):\ urlcontent.find("Next SOI update expected:")+60] date_update = date_update.split("\n")[0] print date_update print(10*'='+'\n') # ### Get the data for Tahiti # In[10]: tahitidf = get_BOM_MSLP(station='tahiti') # ### Get the data for Darwin # In[11]: darwindf = get_BOM_MSLP(station='darwin') # ### defines climatological period here # In[14]: clim_start = 1941 clim_end = 2010 clim = "{}_{}".format(clim_start, clim_end) # ### calculates the climatology # In[15]: tahiti_cli = tahitidf.loc[clim_start:clim_end,:] darwin_cli = darwindf.loc[clim_start:clim_end,:] tahiti_mean = tahiti_cli.mean(0) darwin_mean = darwin_cli.mean(0) # ### Calculates the SOI # In[28]: soi = ((tahitidf - tahiti_mean) - (darwindf - darwin_mean)) / ((tahiti_cli - darwin_cli).std(0)) soi = np.round(soi, 1) # In[29]: soi.tail() # ### writes the CSV file # In[30]: soi.to_csv(os.path.join(opath, "NICO_NIWA_SOI_{}.csv".format(clim))) # ### stacks everything and set a Datetime index # In[31]: ts_soi = pd.DataFrame(soi.stack()) dates = [] for i in xrange(len(ts_soi)): dates.append(dparser.parse("{}-{}-1".format(ts_soi.index.get_level_values(0)[i], ts_soi.index.get_level_values(1)[i]))) ts_soi.index = dates ts_soi.columns = [['soi']] # In[33]: ts_soi.tail() # ### choose the period of display # In[34]: ts_soi = ts_soi.truncate(before="2012/1/1") # ### 3 months rolling mean, and some data munging # In[35]: ts_soi[['soirm']] = pd.rolling_mean(ts_soi, 3, center=True) dates = np.array(ts_soi.index.to_pydatetime()) widths=np.array([(dates[j+1]-dates[j]).days for j in range(len(dates)-1)] + [30]) ### middle of the month for the 3 month running mean plot datesrm = np.array([x + timedelta(days=15) for x in dates]) soi = ts_soi['soi'].values soim = ts_soi['soirm'].values # ### plots the SOI, lots of boilerplate here # In[36]: fig, ax = plt.subplots(figsize=(14,7)) fig.subplots_adjust(bottom=0.15) ax.bar(dates[soi>=0],soi[soi>=0], width=widths[soi>=0], facecolor='steelblue', \ alpha=.8, edgecolor='steelblue', lw=2) ax.bar(dates[soi<0],soi[soi<0], width=widths[soi<0], facecolor='coral', \ alpha=.8, edgecolor='coral', lw=2) ax.plot(datesrm,soim, lw=3, color='k', label='3-mth mean') ax.xaxis.set_minor_locator(months) ax.xaxis.set_major_locator(years) ax.xaxis.set_minor_formatter(mFMT) ax.xaxis.set_major_formatter(yFMT) ax.axhline(0, color='k') #ax.set_frame_on(False) labels = ax.get_xminorticklabels() for label in labels: label.set_fontsize(14) label.set_rotation(90) labels = ax.get_xmajorticklabels() for label in labels: label.set_fontsize(18) labels = ax.get_yticklabels() for label in labels: label.set_fontsize(18) ax.grid(linestyle='--') ax.xaxis.grid(True, which='both') ax.legend(loc=3, fancybox=True) ax.set_ylim(-3., 3.) ax.set_ylabel('Monthly SOI (NIWA)', fontsize=14, backgroundcolor="w") ax.text(dates[0],3.2,"NIWA SOI", fontsize=24, fontweight='bold') ax.text(dates[-5], 2.8, "%s NIWA Ltd." % (u'\N{Copyright Sign}')) textBm = "%s = %+4.1f" % (dates[-1].strftime("%B %Y"), soi[-1]) textBs = "%s to %s = %+4.1f" % (dates[-3].strftime("%b %Y"), dates[-1].strftime("%b %Y"), soi[-3:].mean()) ax.text(datesrm[8],3.2,"Latest values: %s, %s" % (textBm, textBs), fontsize=16) ax.text(datesrm[0],2.8,date_update, fontsize=14) # ### saves the figure # In[39]: fig.savefig(os.path.join(fpath, "NICO_NIWA_SOI_{}clim.png".format(clim)), dpi=200)