#!/usr/bin/env python # coding: utf-8 # [![View notebook](https://img.shields.io/static/v1?label=render%20on&logo=github&color=87ce3e&message=GitHub)](https://github.com/open-atmos/PyPartMC/blob/main/examples/particle_simulation.ipynb) # [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/open-atmos/PyPartMC/blob/main/examples/particle_simulation.ipynb) # [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/open-atmos/PyPartMC.git/main?urlpath=lab/tree/examples/particle_simulation.ipynb) # [![ARM JupyterHub](https://img.shields.io/static/v1?label=launch%20in&logo=jupyter&color=lightblue&message=ARM+JupyterHub)](https://jupyterhub.arm.gov/hub/user-redirect/git-pull?repo=https%3A//github.com/open-atmos/PyPartMC&branch=main&urlPath=) (requires [logging in with ARM account](https://www.arm.gov/capabilities/computing-resources) and directing Jupyter to a notebook within the cloned repo) # In[1]: # This file is a part of PyPartMC licensed under the GNU General Public License v3 # Copyright (C) 2023 University of Illinois Urbana-Champaign # Authors: # - https://github.com/compdyn/partmc/graphs/contributors # - https://github.com/open-atmos/PyPartMC/graphs/contributors # ### Urban plume simulation: based on Riemer et al. 2009 (JGR) "Simulating the evolution of soot mixing state with a particleā€resolved aerosol model." # # https://doi.org/10.1029/2008JD011073 # # This simulation shows the evolution of carbonaceous aerosols from different emission types # in an idealized urban plume case representative of a large urban area. This notebook also provides a # step-by-step description of how to set up and run other user-defined PyPartMC simulations. # In[2]: import sys import os if 'google.colab' in sys.modules: get_ipython().system('pip --quiet install open-atmos-jupyter-utils') from open_atmos_jupyter_utils import pip_install_on_colab pip_install_on_colab('PyPartMC') elif 'JUPYTER_IMAGE' in os.environ and '.arm.gov' in os.environ['JUPYTER_IMAGE']: get_ipython().system('pip --quiet install PyPartMC open_atmos_jupyter_utils') _pypartmc_path = get_ipython().getoutput("pip show PyPartMC | fgrep Location | cut -f2 -d' '") sys.path.extend(_pypartmc_path if _pypartmc_path[0] not in sys.path else []) # In[3]: import numpy as np import matplotlib.pyplot as plt import matplotlib from open_atmos_jupyter_utils import show_plot import PyPartMC as ppmc from PyPartMC import si # #### Defining gas species (GasData) # # The ``ppmc.GasData`` object contains information regarding the tracked gas species. # Here an example `gas_data`is the set of gas species from the CBMZ gas-phase mechanism # as PartMC is often coupled to the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) # which uses the CBM-Z gas-phase mechanism such as was the case in Riemer et al. 2009. # In[4]: gas_data = ppmc.GasData(("H2SO4","HNO3","HCl","NH3","NO","NO2", "NO3", "N2O5", "HONO", "HNO4", "O3", "O1D", "O3P", "OH", "HO2", "H2O2", "CO", "SO2", "CH4", "C2H6", "CH3O2", "ETHP", "HCHO", "CH3OH", "ANOL", "CH3OOH", "ETHOOH", "ALD2", "HCOOH", "RCOOH", "C2O3", "PAN", "ARO1", "ARO2", "ALK1", "OLE1", "API1", "API2", "LIM1", "LIM2", "PAR", "AONE", "MGLY", "ETH", "OLET", "OLEI", "TOL", "XYL", "CRES", "TO2", "CRO", "OPEN", "ONIT", "ROOH", "RO2", "ANO2", "NAP", "XO2", "XPAR", "ISOP", "ISOPRD", "ISOPP", "ISOPN", "ISOPO2", "API", "LIM", "DMS", "MSA", "DMSO", "DMSO2", "CH3SO2H", "CH3SCH2OO", "CH3SO2", "CH3SO3", "CH3SO2OO", "CH3SO2CH2OO", "SULFHOX" )) # #### Defining aerosol species and their properties (AeroData) # # The `ppmc.AeroData` object contains the set of tracked aerosol species and their physical # properties. Here `aero_data` contains 20 different aerosol species with their specified physical properties such as density, molecular weight and hygroscopicity parameter $\kappa$. # In[5]: aero_data = ppmc.AeroData( ( # density ions in soln (1) molecular weight kappa (1) # | | | | {"SO4": [1800 * si.kg / si.m**3, 0, 96.0 * si.g / si.mol, 0.65]}, {"NO3": [1800 * si.kg / si.m**3, 0, 62.0 * si.g / si.mol, 0.65]}, {"Cl": [2200 * si.kg / si.m**3, 0, 35.5 * si.g / si.mol, 1.28]}, {"NH4": [1800 * si.kg / si.m**3, 0, 18.0 * si.g / si.mol, 0.65]}, {"MSA": [1800 * si.kg / si.m**3, 0, 95.0 * si.g / si.mol, 0.53]}, {"ARO1": [1400 * si.kg / si.m**3, 0, 150.0 * si.g / si.mol, 0.10]}, {"ARO2": [1400 * si.kg / si.m**3, 0, 150.0 * si.g / si.mol, 0.10]}, {"ALK1": [1400 * si.kg / si.m**3, 0, 140.0 * si.g / si.mol, 0.10]}, {"OLE1": [1400 * si.kg / si.m**3, 0, 140.0 * si.g / si.mol, 0.10]}, {"API1": [1400 * si.kg / si.m**3, 0, 184.0 * si.g / si.mol, 0.10]}, {"API2": [1400 * si.kg / si.m**3, 0, 184.0 * si.g / si.mol, 0.10]}, {"LIM1": [1400 * si.kg / si.m**3, 0, 200.0 * si.g / si.mol, 0.10]}, {"LIM2": [1400 * si.kg / si.m**3, 0, 200.0 * si.g / si.mol, 0.10]}, {"CO3": [2600 * si.kg / si.m**3, 0, 60.0 * si.g / si.mol, 0.53]}, {"Na": [2200 * si.kg / si.m**3, 0, 23.0 * si.g / si.mol, 1.28]}, {"Ca": [2600 * si.kg / si.m**3, 0, 40.0 * si.g / si.mol, 0.53]}, {"OIN": [2600 * si.kg / si.m**3, 0, 1.0 * si.g / si.mol, 0.10]}, {"OC": [1400 * si.kg / si.m**3, 0, 1.0 * si.g / si.mol, 0.001]}, {"BC": [1800 * si.kg / si.m**3, 0, 1.0 * si.g / si.mol, 0.00]}, {"H2O": [1000 * si.kg / si.m**3, 0, 18.0 * si.g / si.mol, 0.00]}, ) ) # #### Initializing gas mixing ratios (GasState) # # The `ppmc.GasState` object tracks the current state of the gas mixing ratios (units: ppb). # The size and order of species in `gas_state` are defined by `gas_data`. # Here all non-zero gas species values in a tuple have be set to `gas_state.mix_rats`, which is the full list of gas mixing ratios. The initial condition of gases mixing ratios can be found in Table 1. # In[6]: gas_state = ppmc.GasState(gas_data) gas_state.mix_rats = ( {"NO": [0.1E+00]}, {"NO2": [1.0E+00]}, {"HNO3": [1.0E+00]}, {"O3": [5.0E+01]}, {"H2O2": [1.1E+00]}, {"CO": [2.1E+02]}, {"SO2": [0.8E+00]}, {"NH3": [0.5E+00]}, {"HCl": [0.7E+00]}, {"CH4": [2.2E+03]}, {"C2H6": [1.0E+00]}, {"HCHO": [1.2E+00]}, {"CH3OH": [1.2E-01]}, {"CH3OOH": [0.5E+00]}, {"ALD2": [1.0E+00]}, {"PAR": [2.0E+00]}, {"AONE": [1.0E+00]}, {"ETH": [0.2E+00]}, {"OLET": [2.3E-02]}, {"OLEI": [3.1E-04]}, {"TOL": [0.1E+00]}, {"XYL": [0.1E+00]}, {"ONIT": [0.1E+00]}, {"PAN": [0.8E+00]}, {"RCOOH": [0.2E+00]}, {"ROOH": [2.5E-02]}, {"ISOP": [0.5E+00]} ) # ### Aerosol size distribution # # The initial, background, and emitted number distributions are superpositions of lognormal distributions, each defined by: # # $n(D) = \frac{N}{\sqrt{2 \pi} \log_{10} \sigma_{\rm g}} \exp # \left(- \frac{\left(\log_{10} D - \log_{10} D_{\rm gn} \right)^2} # {2 \log_{10}^2 \sigma_{\rm g}}\right)$, # # where $N$ is the total number concentration, $D_{\rm gn}$ is the geometric mean diameter and $\sigma_{\rm g}$ # is the geometric standard deviation. # # #### Initial aerosol distributions # # The initial aerosol distribution consists of two lognormal modes as follows (from Table 2) # # | Mode | $N$ (m$^{-3}$) | $D_{\rm gn}$ ($\micro$m) | $\sigma_{\rm g}$ | Composition| # |--------------|-------------------|--------------------------|------------------|------------| # | Aitken | $3.2 \times 10^9$ | 0.02 | 1.45 | 50% (NH4)2SO4, 50% POA | # | Accumulation | $2.9 \times 10^9$ | 0.116 | 1.65 | 50% (NH4)2SO4, 50% POA | # # #### Emitted aerosol distributions # # Emissions consist of three lognormal modes as follows (from Table 2) # # | Mode | $E$ (m$^{-2}$)| $D_{\rm gn}$ ($\micro$m) | $\sigma_g$ | Composition | # |----------|----------|----------|----------|----------| # | Meat cooking | $3.2 \times 10^9$ | 0.086 | 1.9 | 100% POA | # | Diesel vehicles | $2.9 \times 10^9$ | 0.05 | 1.7 | 30% POA, 70% BC | # | Gasoline vehicles | $2.9 \times 10^9$ | 0.05 | 1.7 | 80% POA, 20% BC | # # where $E$ is the area emission source strength. The emission process in PartMC takes # emissions into the box are scaled by an emission scale factor # as well as divided by boundary layer height. # In[7]: AERO_DIST_INIT = [ { "init_small": { "mass_frac": [{"SO4": [1]}, {"OC": [1.375]}, {"NH4": [0.375]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 3.2e9 / si.m**3, "geom_mean_diam": 0.02 * si.um, "log10_geom_std_dev": 0.161, }, "init_large": { "mass_frac": [{"SO4": [1]}, {"OC": [1.375]}, {"NH4": [0.375]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 2.9e9 / si.m**3, "geom_mean_diam": 0.16 * si.um, "log10_geom_std_dev": 0.217, }, } ] aero_dist_init = ppmc.AeroDist(aero_data, AERO_DIST_INIT) # In[8]: AERO_DIST_EMIT = { "gasoline": { "mass_frac": [{"OC": [0.8]}, {"BC": [0.2]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 5e7 / si.m**3, "geom_mean_diam": 5e-8 * si.m, "log10_geom_std_dev": 0.24, }, "diesel": { "mass_frac": [{"OC": [0.3]}, {"BC": [0.7]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 1.6e8 / si.m**3, "geom_mean_diam": 5e-8 * si.m, "log10_geom_std_dev": 0.24, }, "cooking": { "mass_frac": [{"OC": [1]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 9e6 / si.m**3, "geom_mean_diam": 8.64e-8 * si.m, "log10_geom_std_dev": 0.28, }, } # #### Emitted gas species # In[9]: gas_emit_times = [0, 3600, 7200, 10800, 14400, 18000, 21600, 25200, 28800, 32400, 36000, 39600, 43200, 46800, 50400, 54000, 57600, 61200, 64800, 68400, 72000, 75600, 79200, 82800, 90000, 93600, 97200, 100800, 104400, 108000] gas_emit_rates = np.zeros(len(gas_emit_times)) gas_emit_rates[0:12] = .5 SO2 = [4.234E-09, 5.481E-09, 5.089E-09, 5.199E-09, 5.221E-09, 5.284E-09, 5.244E-09, 5.280E-09, 5.560E-09, 5.343E-09, 4.480E-09, 3.858E-09, 3.823E-09, 3.607E-09, 3.533E-09, 3.438E-09, 2.866E-09, 2.667E-09, 2.636E-09, 2.573E-09, 2.558E-09, 2.573E-09, 2.715E-09, 3.170E-09, 4.2344E-09, 5.481E-09, 5.089E-09, 5.199E-09, 5.221E-09, 5.284E-09] NO2 = [3.024E-09, 3.334E-09, 3.063E-09, 3.281E-09, 3.372E-09, 3.523E-09, 3.402E-09, 3.551E-09, 3.413E-09, 3.985E-09, 3.308E-09, 2.933E-09, 2.380E-09, 1.935E-09, 1.798E-09, 1.537E-09 , 9.633E-10, 8.873E-10, 7.968E-10, 6.156E-10, 5.920E-10, 6.320E-10, 9.871E-10, 1.901E-09, 3.024E-09, 3.334E-09, 3.063E-09, 3.281E-09, 3.372E-09, 3.523E-09] NO = [5.749E-08, 6.338E-08, 5.825E-08, 6.237E-08, 6.411E-08, 6.699E-08, 6.468E-08, 6.753E-08, 6.488E-08, 7.575E-08, 6.291E-08, 5.576E-08, 4.524E-08, 3.679E-08, 3.419E-08, 2.924E-08, 1.832E-08, 1.687E-08, 1.515E-08, 1.171E-08, 1.125E-08, 1.202E-08, 1.877E-08, 3.615E-08, 5.749E-08, 6.338E-08, 5.825E-08, 6.237E-08, 6.411E-08, 6.699E-08] CO = [7.839E-07, 5.837E-07, 4.154E-07, 4.458E-07, 4.657E-07, 4.912E-07, 4.651E-07, 4.907E-07, 6.938E-07, 8.850E-07, 8.135E-07, 4.573E-07, 3.349E-07, 2.437E-07, 2.148E-07, 1.662E-07, 8.037E-08, 7.841E-08, 6.411E-08, 2.551E-08, 2.056E-08, 3.058E-08, 1.083E-07, 3.938E-07, 7.839E-07, 5.837E-07, 4.154E-07, 4.458E-07, 4.657E-07, 4.912E-07] NH3 = [8.93E-09, 8.705E-09, 1.639E-08, 1.466E-08, 1.6405E-08, 1.8805E-08, 1.65E-08, 1.8045E-08, 1.347E-08, 6.745E-09, 5.415E-09, 2.553E-09, 2.087E-09, 2.2885E-09, 2.7265E-09, 2.7338E-09, 9.96E-10, 2.707E-09, 9.84E-10, 9.675E-10, 9.905E-10, 1.0345E-09, 1.0825E-09, 2.7465E-09, 8.93E-09, 8.705E-09, 1.639E-08, 1.466E-08, 1.6405E-08, 1.8805E-08] HCHO = [4.061E-09, 3.225E-09, 2.440E-09, 2.639E-09, 2.754E-09, 2.888E-09, 2.741E-09, 2.885E-09, 4.088E-09, 5.186E-09, 4.702E-09, 2.601E-09, 1.923E-09, 1.412E-09, 1.252E-09, 9.776E-10, 4.687E-10, 4.657E-10, 3.836E-10, 1.717E-10, 1.448E-10, 1.976E-10, 6.193E-10, 2.090E-09, 4.061E-09, 3.225E-09, 2.440E-09, 2.639E-09, 2.754E-09, 2.888E-09] ALD2 = [1.702E-09, 1.283E-09, 9.397E-10, 1.024E-09, 1.076E-09, 1.132E-09, 1.068E-09, 1.130E-09, 1.651E-09, 2.132E-09, 1.985E-09, 1.081E-09, 7.847E-10, 5.676E-10, 5.003E-10, 3.838E-10, 1.784E-10, 1.766E-10, 1.430E-10, 5.173E-11, 4.028E-11, 6.349E-11, 2.428E-10, 8.716E-10, 1.7022E-09, 1.283E-09, 9.397E-10, 1.024E-09, 1.076E-09, 1.132E-09] ETH = [1.849E-08, 1.391E-08, 1.010E-08, 1.095E-08, 1.148E-08, 1.209E-08, 1.142E-08, 1.205E-08, 1.806E-08, 2.320E-08, 2.149E-08, 1.146E-08, 8.384E-09, 6.124E-09, 5.414E-09, 4.119E-09, 1.953E-09, 1.927E-09, 1.575E-09, 6.164E-10, 4.973E-10, 7.420E-10, 2.653E-09, 9.477E-09, 1.849E-08, 1.391E-08, 1.010E-08, 1.095E-08, 1.148E-08, 1.209E-08] OLEI = [5.948E-09, 4.573E-09, 3.374E-09, 3.668E-09, 3.851E-09, 4.050E-09, 3.841E-09, 4.052E-09, 6.094E-09, 7.795E-09, 7.215E-09, 3.738E-09, 2.718E-09, 1.973E-09, 1.729E-09, 1.338E-09, 6.333E-10, 6.394E-10, 5.126E-10, 2.089E-10, 1.708E-10, 2.480E-10, 8.947E-10, 3.057E-09, 5.948E-09, 4.573E-09, 3.374E-09, 3.668E-09, 3.851E-09, 4.050E-09] OLET = [5.948E-09, 4.573E-09, 3.374E-09, 3.668E-09, 3.851E-09, 4.050E-09, 3.841E-09, 4.052E-09, 6.094E-09, 7.795E-09, 7.215E-09, 3.738E-09, 2.718E-09, 1.973E-09, 1.729E-09, 1.338E-09, 6.333E-10, 6.394E-10, 5.126E-10, 2.089E-10, 1.708E-10, 2.480E-10, 8.947E-10, 3.057E-09, 5.948E-09, 4.573E-09, 3.374E-09, 3.668E-09, 3.851E-09, 4.050E-09] TOL = [6.101E-09, 8.706E-09, 7.755E-09, 8.024E-09, 8.202E-09, 8.410E-09, 8.218E-09, 8.407E-09, 1.020E-08, 1.139E-08, 7.338E-09, 4.184E-09, 3.078E-09, 2.283E-09, 2.010E-09, 1.575E-09, 8.966E-10, 6.705E-10, 5.395E-10, 2.462E-10, 2.106E-10, 2.852E-10, 9.300E-10, 3.144E-09, 6.101E-09, 8.706E-09, 7.755E-09, 8.024E-09, 8.202E-09, 8.410E-09] XYL = [5.599E-09, 4.774E-09, 3.660E-09, 3.909E-09, 4.060E-09, 4.239E-09, 4.060E-09, 4.257E-09, 6.036E-09, 7.448E-09, 6.452E-09, 3.435E-09, 2.525E-09, 1.859E-09, 1.650E-09, 1.302E-09, 6.852E-10, 6.773E-10, 5.437E-10, 2.697E-10, 2.358E-10, 3.059E-10, 8.552E-10, 2.861E-10, 5.599E-09, 4.774E-09, 3.660E-09, 3.909E-09, 4.060E-09, 4.239E-09] AONE = [7.825E-10, 2.858E-09, 2.938E-09, 2.947E-09, 2.948E-09, 2.951E-09, 2.947E-09, 2.954E-09, 3.032E-09, 2.766E-09, 1.313E-09, 1.015E-09, 8.363E-10, 7.040E-10, 6.404E-10, 6.264E-10, 5.661E-10, 1.538E-10, 1.500E-10, 1.395E-10, 1.476E-10, 1.503E-10, 2.256E-10, 4.244E-10, 7.825E-10, 2.858E-09, 2.938E-09, 2.947E-09, 2.948E-09, 2.951E-09] PAR = [1.709E-07, 1.953E-07, 1.698E-07, 1.761E-07, 1.808E-07, 1.865E-07, 1.822E-07, 1.8599E-07, 2.412E-07, 2.728E-07, 2.174E-07, 1.243E-07, 9.741E-08, 7.744E-08, 6.931E-08, 5.805E-08, 3.900E-08, 3.317E-08, 2.956E-08, 2.306E-08, 2.231E-08, 2.395E-08, 4.284E-08, 9.655E-08, 1.709E-07, 1.953E-07, 1.698E-07, 1.761E-07, 1.808E-07, 1.865E-07] ISOP = [2.412E-10, 2.814E-10, 3.147E-10, 4.358E-10, 5.907E-10, 6.766E-10, 6.594E-10, 5.879E-10, 5.435E-10, 6.402E-10, 5.097E-10, 9.990E-11, 7.691E-11, 5.939E-11, 5.198E-11, 4.498E-11, 3.358E-11, 2.946E-11, 2.728E-11, 2.183E-11, 1.953E-11, 1.890E-11, 2.948E-11, 1.635E-10, 2.412E-10, 2.814E-10, 3.147E-10, 4.358E-10, 5.907E-10, 6.766E-10] CH3OH = [2.368E-10, 6.107E-10, 6.890E-10, 6.890E-10, 6.890E-10, 6.889E-10, 6.886E-10, 6.890E-10, 6.890E-10, 5.414E-10, 3.701E-10, 2.554E-10, 1.423E-10, 6.699E-11, 2.912E-11, 2.877E-11, 2.825E-11, 2.056E-12, 2.056E-12, 2.056E-12, 2.435E-12, 2.435E-12, 4.030E-11, 1.168E-10, 2.368E-10, 6.107E-10, 6.890E-10, 6.890E-10, 6.890E-10, 6.889E-10] ANOL = [5.304E-09, 7.960E-09, 7.649E-09, 7.649E-09, 7.432E-09, 7.428E-09, 7.431E-09, 7.434E-09, 7.434E-09, 6.979E-09,5.666E-09, 4.361E-09, 4.148E-09, 3.289E-09, 2.858E-09, 2.856E-09, 1.127E-09, 9.615E-10, 9.616E-10, 9.616E-10, 9.654E-10, 9.654E-10, 1.397E-09, 2.264E-09, 5.304E-09, 7.960E-09, 7.649E-09, 7.649E-09, 7.432E-09, 7.428E-09] emit_gas = [ {"time": gas_emit_times}, {"rate": list(gas_emit_rates)}, {"SO2": SO2}, {"NO": NO}, {"NO2": NO2}, {"CO": CO}, {"NH3": NH3}, {"HCHO": HCHO}, {"ALD2": ALD2}, {"ETH": ETH}, {"OLEI": OLEI}, {"OLET": OLET}, {"TOL": TOL}, {"XYL": XYL}, {"AONE": AONE}, {"PAR": PAR}, {"ISOP": ISOP}, {"CH3OH": CH3OH}, {"ANOL": ANOL}, ] # #### Environmental state (EnvState) # # ``ppmc.EnvState`` consists of environmental values for the current time of the simulation, # some of which are fixed and some of which are time varying. # In[10]: env_state = ppmc.EnvState( { "rel_humidity": 0.95, "latitude": 0, "longitude": 0, "altitude": 0 * si.m, "start_time": 21600 * si.s, "start_day": 200, } ) # #### Describing the time evolution of the environment # # PartMC requires time series of pressure, temperature and boundary layer heights. # Water mixing ratio is kept constant and the relative humidity is updated accordingly. # In[11]: time_timeseries = list(np.linspace(0,24*3600,25)) pressure_timeseries = list(np.ones(25) * 1e5) temp_timeseries = [290.016,292.5, 294.5, 296.112, 297.649, 299.049, 299.684, 299.509,299.002, 298.432, 296.943, 295.153, 293.475, 292.466, 291.972, 291.96, 291.512, 291.481, 290.5, 290.313, 290.317, 290.362, 290.245, 290.228, 291.466] height_timeseries = [171.045, 228.210, 296.987, 366.002, 410.868, 414.272, 417.807,414.133, 397.465, 376.864, 364.257, 352.119, 338.660, 322.028, 305.246, 258.497, 240.478, 187.229, 145.851, 128.072, 110.679, 97.628, 93.034, 93.034, 93.034] # #### Background values # # Background air is mixed in due to dillution effects both by the prescribed rate of dillution # and changes in boundary layer height. In Riemer et al 2009, the gas mixing ratios and aerosol distributions # are identical to those of the initial conditions. # In[12]: AERO_DIST_BACKGROUND = { "back_small": { "mass_frac": [{"SO4": [1]}, {"OC": [1.375]}, {"NH4": [0.375]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 3.2e9 / si.m**3, "geom_mean_diam": 0.02 * si.um, "log10_geom_std_dev": 0.161, }, "back_large": { "mass_frac": [{"SO4": [1]}, {"OC": [1.375]}, {"NH4": [0.375]}], "diam_type": "geometric", "mode_type": "log_normal", "num_conc": 2.9e9 / si.m**3, "geom_mean_diam": 0.16 * si.um, "log10_geom_std_dev": 0.217, }, } # In[13]: times = [0 * si.s] back_gas = [{"time": times}, {"rate": [1.5e-5 / si.s]}, {"NO": [0.1E+00]}, {"NO2": [1.0E+00]}, {"HNO3": [1.0E+00]}, {"O3": [5.0E+01]}, {"H2O2": [1.1E+00]}, {"CO": [2.1E+02]}, {"SO2": [0.8E+00]}, {"NH3": [0.5E+00]}, {"HCl": [0.7E+00]}, {"CH4": [2.2E+03]}, {"C2H6": [1.0E+00]}, {"HCHO": [1.2E+00]}, {"CH3OH": [1.2E-01]}, {"CH3OOH": [0.5E+00]}, {"ALD2": [1.0E+00]}, {"PAR": [2.0E+00]}, {"AONE": [1.0E+00]}, {"ETH": [0.2E+00]}, {"OLET": [2.3E-02]}, {"OLEI": [3.1E-04]}, {"TOL": [0.1E+00]}, {"XYL": [0.1E+00]}, {"ONIT": [0.1E+00]}, {"PAN": [0.8E+00]}, {"RCOOH": [0.2E+00]}, {"ROOH": [2.5E-02]}, {"ISOP": [0.5E+00]} ] # #### Finalizing scenario information (Scenario) # The ``ppmc.Scenario`` object contains all information necessary for the time evolution of the values # in the simulation. As time advances in the simulation, PyPartMC updates `env_state` based on # these prescribed environmental time series and emits gases and aerosols accordingly. # In[14]: scenario = ppmc.Scenario( gas_data, aero_data, { "temp_profile": [{"time": time_timeseries}, {"temp": temp_timeseries}], "pressure_profile": [ {"time": time_timeseries}, {"pressure": pressure_timeseries}, ], "height_profile": [{"time": time_timeseries}, {"height": height_timeseries}], "gas_emissions": emit_gas, "gas_background": back_gas, "aero_emissions": [ {"time": [0 * si.s, 12 * 3600 * si.s]}, {"rate": [1 / si.s, 0 / si.s]}, {"dist": [[AERO_DIST_EMIT],[AERO_DIST_EMIT]]}, ], "aero_background": [ {"time": [0 * si.s]}, {"rate": [1.5e-5 / si.s]}, {"dist": [[AERO_DIST_BACKGROUND]]}, ], "loss_function": "none", }, ) # Here, the initial values of the environment is set based on the ``ppmc.Scenario`` object `scenario` # In[15]: T_INITIAL = 0.0 scenario.init_env_state(env_state, T_INITIAL) # Simulation parameters are contained in the ``ppmc.RunPartOpt`` object. # Options include simulation length (``t_max``), time step size (``del_t``) # as well as other numerical settings. Additionally, model processes can be enabled or disabled. # In this simulation, Brownian coagulation is enabled with ``do_coagulation": True`` and ``"coag_kernel": "brown"``. # In[16]: run_part_opt = ppmc.RunPartOpt( { "output_prefix": "urban_plume", "do_coagulation": True, "coag_kernel": "brown", "t_max": 86400 * si.s, "del_t": 60 * si.s, } ) # #### Sampling the initial aerosol distribution # # Before beginning the simulation, the initial condition for aerosols must be sampled. # In[17]: N_PART = 1000 aero_state = ppmc.AeroState(aero_data, N_PART, 'nummass_source') aero_state.dist_sample( aero_dist_init, sample_prop=1.0, create_time=0.0, allow_doubling=True, allow_halving=True, ) # In[18]: camp_core = ppmc.CampCore() photolysis = ppmc.Photolysis() # #### Running the simulation # In[19]: N_STEPS = int(run_part_opt.t_max / run_part_opt.del_t) num_conc = np.zeros(N_STEPS + 1) num_conc[0] = aero_state.total_num_conc mass_conc = np.zeros(N_STEPS + 1) mass_conc[0] = aero_state.total_mass_conc time = np.zeros(N_STEPS + 1) gas_mix_rat = np.zeros((N_STEPS + 1, gas_state.n_spec)) gas_mix_rat[0, :] = gas_state.mix_rats height = np.zeros((N_STEPS + 1)) temperature = np.zeros((N_STEPS + 1)) rh = np.zeros((N_STEPS + 1)) height[0] = env_state.height temperature[0] = env_state.temp rh[0] = env_state.rh diam_grid = ppmc.BinGrid(30, "log", 1e-9, 1e-6) dists = [] dry_diameters = aero_state.dry_diameters num_concs = aero_state.num_concs dists.append(ppmc.histogram_1d(diam_grid, dry_diameters, num_concs)) last_output_time = 0. last_progress_time = 0. i_output = 1 for i_time in range(1,N_STEPS + 1): (last_output_time, last_progress_time, i_output) = ppmc.run_part_timestep( scenario, env_state, aero_data, aero_state, gas_data, gas_state, run_part_opt, camp_core, photolysis, i_time, T_INITIAL, last_output_time, last_progress_time, i_output ) num_conc[i_time] = aero_state.total_num_conc mass_conc[i_time] = aero_state.total_mass_conc time[i_time] = env_state.elapsed_time gas_mix_rat[i_time, :] = gas_state.mix_rats height[i_time] = env_state.height temperature[i_time] = env_state.temp rh[i_time] = env_state.rh if np.mod(i_time * run_part_opt.del_t, 3600.0) == 0: dry_diameters = aero_state.dry_diameters num_concs = aero_state.num_concs dists.append(ppmc.histogram_1d(diam_grid, dry_diameters, num_concs)) # ### Analysis # In[20]: plt.rcParams.update({'font.size': 9}) plt.rcParams.update({'figure.figsize': (3.08,2.5)}) plt.rcParams.update({"axes.grid" : True}) # #### Environmental parameters (Figure 3) # In[21]: plt.plot(time,temperature,'r') plt.ylabel('Temperature (K)', color='r') plt.ylim([275,300]) plt.xticks(np.linspace(0, time[-1], 5)) plt.xlim([0,time[-1]]) plt.xlabel('Time (s)') plt.twinx() plt.plot(time,rh*100,'g') plt.ylabel('Relative humidity (%)', color='g') plt.ylim([0,100]) show_plot() # In[22]: plt.plot(time,height) plt.xticks(np.linspace(0, time[-1], 5)) plt.xlim([0,time[-1]]) plt.xlabel('Time (s)') plt.ylim([0,500]) plt.ylabel('Boundary layer height (m)') show_plot() # In[23]: def set_tickmarks(axes, n_ticks): ylims = axes.get_ylim() if np.log10(ylims[0]) > 1: val = -int(np.ceil(np.abs(np.log10(ylims[0])))) + 1 else: val = int(np.ceil(np.abs(np.log10(ylims[0])))) + 1 ymin = round(ylims[0] - .1 * ylims[0], val) ymax = round(ylims[1] + .1 * ylims[1], val) plt.ylim([ymin, ymax]) plt.yticks(np.linspace(ymin, ymax, n_ticks)) # In[24]: #### Evolution of gas-phase species # In[25]: gases = ["NO", "NO2", "O3", "HNO3", "SO2", "NH3"] for i_spec, spec in enumerate(gases): i_spec = gas_data.spec_by_name(spec) l, = plt.plot(time, gas_mix_rat[:, i_spec], label=spec) plt.xlabel("Time (s)") plt.ylabel("Mixing ratio (ppb)") plt.xticks(np.linspace(0, time[-1], 5)) plt.legend() show_plot() # #### Bulk Aerosol Evolution # In[26]: plt.plot(time, mass_conc, "b", label="mass conc") plt.ylabel("Mass concentration (kg m$^{-3}$)", color='b') plt.xlabel("Time (s)") set_tickmarks(plt.gca(), 5) plt.twinx() plt.plot(time, num_conc, "g", label="num conc") plt.xticks(np.linspace(0, time[-1], 5)) plt.xlim([time[0],time[-1]]) set_tickmarks(plt.gca(), 5) plt.ylabel(r"Number concentration ($\#$ m$^{-3}$)", color='g') show_plot() # #### Aerosol Size Distribution Evolution # In[27]: plt.plot(diam_grid.centers, dists[0],label='$t = 0$ h') plt.plot(diam_grid.centers, dists[6],label='$t = 6$ h') plt.plot(diam_grid.centers, dists[12],label='$t = 12$ h') plt.plot(diam_grid.centers, dists[24],label='$t = 24$ h') plt.xscale("log") plt.xlabel("Dry diameter (m)") plt.ylabel(r"Number concentration $n(D)$ ($\#$ m$^{-3}$)") plt.ylim(bottom=0) plt.legend() plt.xlim([diam_grid.edges[0],diam_grid.edges[-1]]) show_plot() # #### Aerosol Mixing State Evolution # # While the previous aerosol figures give an overview of aerosol size distribution and composition # just like traditional size-distribution-based models, they do not address the issue of mixing state. # To show how the mixing state evolved over the course of the simulation we display the data, # where the two-dimensional number distribution is plotted as a function of dry diameter and # dry mass fraction of BC. # # # In[28]: mass_frac_grid = ppmc.BinGrid(100, "linear", 0, 1) mass_frac_histogram = [] num_concs = aero_state.num_concs dry_diameters = aero_state.dry_diameters bc_masses = aero_state.masses(include=["BC"]) dry_masses = aero_state.masses(exclude=["H2O"]) species_mass_frac = np.array(bc_masses) / np.array(dry_masses) vals = ppmc.histogram_2d( diam_grid, dry_diameters, mass_frac_grid, species_mass_frac, num_concs ) # In[29]: plt.pcolormesh( diam_grid.edges, np.array(mass_frac_grid.edges)*100, np.array(vals).T / 1e6, norm=matplotlib.colors.LogNorm(), ) plt.xscale("log") plt.xlim([1e-8, 1e-6]) plt.colorbar(label=r"Number concentration ($\#$ cm$^{-3}$)") plt.xlabel("Dry diameter (m)") plt.ylabel("BC mass fraction (%)") show_plot() # In[ ]: