# %pip install "leafmap[raster]" import leafmap import rasterio import rioxarray import xarray as xr m = leafmap.Map() url = "https://github.com/opengeos/data/releases/download/raster/Libya-2023-07-01.tif" m.add_cog_layer(url, name="Libya") m.add("inspector") m m = leafmap.Map() url = "https://canada-spot-ortho.s3.amazonaws.com/canada_spot_orthoimages/canada_spot5_orthoimages/S5_2007/S5_11055_6057_20070622/S5_11055_6057_20070622.json" m.add_stac_layer(url, bands=["B3", "B2", "B1"], name="SPOT Image") m.add("inspector") m m = leafmap.Map() collection = "landsat-8-c2-l2" item = "LC08_L2SP_047027_20201204_02_T1" m.add_stac_layer( collection=collection, item=item, assets="SR_B7,SR_B5,SR_B4", name="Landsat Band-754", ) m.add("inspector") m url = "https://opengeos.org/data/raster/landsat.tif" satellite = leafmap.download_file(url, "landsat.tif", overwrite=True) m = leafmap.Map() m.add_raster(satellite, indexes=[4, 1, 2], vmin=0, vmax=120, layer_name="Landsat 7") m.add("inspector") m dataset = rasterio.open(satellite) nir = dataset.read(4).astype(float) red = dataset.read(1).astype(float) ndvi = (nir - red) / (nir + red) ndvi_image = leafmap.array_to_image(ndvi, source=satellite) m = leafmap.Map() m.add_raster(satellite, indexes=[4, 1, 2], vmin=0, vmax=120, layer_name="Landsat 7") m.add_raster(ndvi_image, colormap="Greens", layer_name="NDVI") m.add("inspector") m url = "https://opengeos.org/data/raster/srtm90.tif" dem = leafmap.download_file(url, "srtm90.tif") ds = rioxarray.open_rasterio(dem) ds array = ds.sel(band=1) masked_array = xr.where(array < 2000, 0, 1) m = leafmap.Map() m.add_raster(dem, colormap="terrain", layer_name="DEM") m.add_raster(masked_array, colormap="coolwarm", layer_name="Classified DEM") m m = leafmap.Map(center=[37.6, -119], zoom=9) m.split_map( dem, masked_array, left_args={ "layer_name": "DEM", "colormap": "terrain", }, right_args={ "layer_name": "Classified DEM", "colormap": "coolwarm", }, ) m