#!/usr/bin/env python # coding: utf-8 # # Test of Magnetic Model Evaluation - CHAOS-6-Core # In[1]: from time import time as get_time class Timer(): def __init__(self): self.start = get_time() def __call__(self, label="elapsed time", restart=False): print("%s %gs" % (label, get_time() - self.start)) if restart: self.start = get_time() # ### Load model # In[2]: import sys from os.path import basename from eoxmagmod.data import CHAOS6_CORE_LATEST as MODEL_FILE print(basename(MODEL_FILE)) with open(MODEL_FILE) as fin: for idx, line in enumerate(fin, 1): if idx > 5: print("...") break sys.stdout.write(line) # In[3]: # generate random points from math import pi from numpy import sin, cos, dstack, linspace from numpy.random import random, uniform EARTH_RADIUS = 6371.2 # km N_coords = 500 X = random((N_coords*2, 2)) X = X[X[..., 1] < sin(X[..., 0]*pi)][:N_coords, ...] X[..., 0] = pi * (X[..., 0] - 0.5) X[..., 1] = pi*(2.0*X[..., 1] / cos(X[..., 0]) - 1.0) X *= 180./pi lats = X[..., 0] lons = X[..., 1] rads = uniform(EARTH_RADIUS, 1.1*EARTH_RADIUS, N_coords) coords = dstack((lats, lons, rads))[0] # In[4]: # times from numpy import linspace from eoxmagmod import load_model_shc model = load_model_shc(MODEL_FILE) start, end = model.validity N_times = 1500 times = linspace(start, end, N_times) # ### default version # - interpolated in the MJD2000 time domain # - decimal years aligned with callendar years # In[5]: from numpy import empty from eoxmagmod import load_model_shc model_mjd2k = load_model_shc(MODEL_FILE) print(model_mjd2k.coefficients) timer = Timer() b_nec_mjd2k = empty((N_times, N_coords, 3)) for idx, time in enumerate(times): b_nec_mjd2k[idx, ...] = model_mjd2k.eval(time, coords, scale=[1, 1, -1]) timer("model evaluated in") # ### decimal year interpolation # - intrepolated in the decimal year time domain # - decimal years aligned with callendar years # In[6]: from numpy import empty from eoxmagmod import load_model_shc model_dy = load_model_shc( MODEL_FILE, interpolate_in_decimal_years=True ) print(model_dy.coefficients) timer = Timer() b_nec_dy = empty((N_times, N_coords, 3)) for idx, time in enumerate(times): b_nec_dy[idx, ...] = model_dy.eval(time, coords, scale=[1, 1, -1]) timer("model evaluated in") # ### simplified MJD2000 calculation # - intrepolated in the MJD2000 time domain # - decimal years calculated using 365.25 days per year # - this method is used by the [chaosmagpy](http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/) # In[7]: from numpy import empty from eoxmagmod import load_model_shc from eoxmagmod.time_util import decimal_year_to_mjd2000_simple model_mjd2k_simple = load_model_shc( MODEL_FILE, to_mjd2000=decimal_year_to_mjd2000_simple, ) print(model_mjd2k_simple.coefficients) timer = Timer() b_nec_mjd2k_simple = empty((N_times, N_coords, 3)) for idx, time in enumerate(times): b_nec_mjd2k_simple[idx, ...] = model_mjd2k_simple.eval(time, coords, scale=[1, 1, -1]) timer("model evaluated in") # ## Plotting the results # In[8]: from numpy import zeros, concatenate, isnan from matplotlib import pyplot as plt from eoxmagmod import vnorm from eoxmagmod.time_util import mjd2000_to_decimal_year_simple as mjd2000_to_decimal_year def plot(ax, x0, y0, label): x, y = [], [] for idx in range(0, N_coords): x.append(x0) y.append(y0[:, idx]) x, y = concatenate(x), concatenate(y) plt.plot(x, y, '.', markersize=2, color='#1f77b4', label='random samples') plt.plot(node_times, node_val, '+r', markersize=5, label='interpolation nodes') plt.ylabel(label) plt.legend(loc='upper right') plt.text( 0.01, 0.95, 'max: %g nT' % y[~isnan(y)].max(), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes ) plt.text( 0.01, 0.05, 'min: %g nT' % y[~isnan(y)].min(), horizontalalignment='left', verticalalignment='bottom', transform=ax.transAxes ) plt.grid() # ### Effect of the MJD2k vs. decimal_year interpolation time domain # In[9]: model = load_model_shc(MODEL_FILE) node_times = mjd2000_to_decimal_year(model.coefficients._times) node_val = zeros(node_times.shape) delta_b_nec = b_nec_dy - b_nec_mjd2k delta_f = vnorm(b_nec_dy) - vnorm(b_nec_mjd2k) fig = plt.figure(figsize=(16, 16), dpi=100) plt.title("decimal year vs. MJD2000 time domain") times_dy = mjd2000_to_decimal_year(times) ax = plt.subplot(4, 1, 1) plot(ax, times_dy, delta_b_nec[..., 0], "delta B_N / nT") ax = plt.subplot(4, 1, 2) plot(ax, times_dy, delta_b_nec[..., 1], "delta B_E / nT") ax = plt.subplot(4, 1, 3) plot(ax, times_dy, delta_b_nec[..., 2], "delta B_C / nT") ax = plt.subplot(4, 1, 4) plot(ax, times_dy, delta_f, "delta F / nT") plt.show() get_ipython().run_line_magic('matplotlib', 'inline') # ### Effect of the regular vs. simplified decimal year calculation # In[10]: model = load_model_shc(MODEL_FILE) node_times = mjd2000_to_decimal_year(model.coefficients._times) node_val = zeros(node_times.shape) delta_b_nec = b_nec_mjd2k_simple - b_nec_mjd2k delta_f = vnorm(b_nec_mjd2k_simple) - vnorm(b_nec_mjd2k) fig = plt.figure(figsize=(16, 16), dpi=100) plt.title("decimal year vs. MJD2000 time domain") times_dy = mjd2000_to_decimal_year(times) ax = plt.subplot(4, 1, 1) plot(ax, times_dy, delta_b_nec[..., 0], "delta B_N / nT") ax = plt.subplot(4, 1, 2) plot(ax, times_dy, delta_b_nec[..., 1], "delta B_E / nT") ax = plt.subplot(4, 1, 3) plot(ax, times_dy, delta_b_nec[..., 2], "delta B_C / nT") ax = plt.subplot(4, 1, 4) plot(ax, times_dy, delta_f, "delta F / nT") plt.show() get_ipython().run_line_magic('matplotlib', 'inline') # ### Plot the random locations # In[11]: from cartopy.feature import LAND, OCEAN, COASTLINE from cartopy.crs import Mollweide, PlateCarree from matplotlib import pyplot as plt from matplotlib.cm import winter as colormap from matplotlib.colors import Normalize from matplotlib.colorbar import ColorbarBase from mpl_toolkits.mplot3d import Axes3D from eoxmagmod import convert, GEOCENTRIC_SPHERICAL, GEOCENTRIC_CARTESIAN get_ipython().run_line_magic('matplotlib', 'inline') norm = Normalize(vmin=1,vmax=1.1) #help(ccrs) fig = plt.figure(figsize=(16, 16), dpi=100, facecolor='w', edgecolor='k') ax = plt.subplot(2, 1, 1, projection=Mollweide()) gl = ax.gridlines(crs=PlateCarree(), draw_labels=False, linewidth=1, color='silver', alpha=0.5, linestyle='--') ax.add_feature(LAND, facecolor=(1.0, 1.0, 0.9)) ax.add_feature(OCEAN, facecolor=(0.9, 1.0, 1.0)) ax.add_feature(COASTLINE, edgecolor='silver') obj = ax.scatter( lons, lats, c=rads/EARTH_RADIUS, s=1.5, cmap=colormap, norm=norm, transform=PlateCarree(), ) cb = plt.colorbar(obj) cb.ax.set_ylabel("r/R (R = %g km)" % EARTH_RADIUS) ax = plt.subplot(2, 1, 2, projection='3d') cart_coords = convert(coords, GEOCENTRIC_SPHERICAL, GEOCENTRIC_CARTESIAN)/EARTH_RADIUS obj = ax.scatter( cart_coords[:, 0], cart_coords[:, 1], cart_coords[:, 2], c=rads/EARTH_RADIUS, s=1.5, cmap=colormap, norm=norm, ) ax.set_aspect('equal','box') ax.set_xlabel("x/R") ax.set_ylabel("y/R") ax.set_zlabel("z/R") plt.show()