#!/usr/bin/env python # coding: utf-8 # #### New to Plotly? # Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by dowloading the client and [reading the primer](https://plotly.com/python/getting-started/). #
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online). #
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! # #### Imports # The tutorial below imports [numpy](http://www.numpy.org/), [pandas](https://plotly.com/pandas/intro-to-pandas-tutorial/), and [scipy](https://www.scipy.org/) # In[1]: import plotly.plotly as py import plotly.graph_objs as go from plotly.tools import FigureFactory as FF import numpy as np import pandas as pd import scipy # #### Make the Data # We are generating a 1D dataset from a `Weibull Distribution` which has the distrubution # # $$ # \begin{align*} # X = \log(U)^{\frac{1}{a}} # \end{align*} # $$ # # where $U$ is drawn from the `Uniform Distribution`. # In[17]: x=np.random.weibull(1.25, size=1000) print(x[:10]) # #### Histogram # By using a histogram, we can properly divide a 1D dataset into bins with a particular size or width, so as to form a discrete probability distribution # In[21]: trace = go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.25, end=np.max(x)), marker=dict(color='rgb(0, 0, 100)')) layout = go.Layout( title="Histogram Frequency Counts" ) fig = go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-freq-counts') # #### Larger Bins # We can experiment with our bin size and the histogram by grouping the data into larger intervals # In[20]: trace = go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.75, end=np.max(x)), marker=dict(color='rgb(0, 0, 100)')) layout = go.Layout( title="Histogram Frequency Counts" ) fig = go.Figure(data=go.Data([trace]), layout=layout) py.iplot(fig, filename='histogram-freq-counts-larger-bins') # In[1]: from IPython.display import display, HTML display(HTML('')) display(HTML('')) get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade') import publisher publisher.publish( 'python-Frequency-Counts.ipynb', 'python/frequency-counts/', 'Frequency Counts | plotly', 'Learn how to perform frequency counts using Python.', title='Frequency Counts in Python. | plotly', name='Frequency Counts', language='python', page_type='example_index', has_thumbnail='false', display_as='statistics', order=2, ipynb= '~notebook_demo/111') # In[ ]: