#!/usr/bin/env python
# coding: utf-8
# #### New to Plotly?
# Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by dowloading the client and [reading the primer](https://plotly.com/python/getting-started/).
# You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).
# We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!
# #### Imports
# The tutorial below imports [numpy](http://www.numpy.org/), [pandas](https://plotly.com/pandas/intro-to-pandas-tutorial/), and [scipy](https://www.scipy.org/)
# In[1]:
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.tools import FigureFactory as FF
import numpy as np
import pandas as pd
import scipy
# #### Make the Data
# We are generating a 1D dataset from a `Weibull Distribution` which has the distrubution
#
# $$
# \begin{align*}
# X = \log(U)^{\frac{1}{a}}
# \end{align*}
# $$
#
# where $U$ is drawn from the `Uniform Distribution`.
# In[17]:
x=np.random.weibull(1.25, size=1000)
print(x[:10])
# #### Histogram
# By using a histogram, we can properly divide a 1D dataset into bins with a particular size or width, so as to form a discrete probability distribution
# In[21]:
trace = go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.25, end=np.max(x)),
marker=dict(color='rgb(0, 0, 100)'))
layout = go.Layout(
title="Histogram Frequency Counts"
)
fig = go.Figure(data=go.Data([trace]), layout=layout)
py.iplot(fig, filename='histogram-freq-counts')
# #### Larger Bins
# We can experiment with our bin size and the histogram by grouping the data into larger intervals
# In[20]:
trace = go.Histogram(x=x, xbins=dict(start=np.min(x), size=0.75, end=np.max(x)),
marker=dict(color='rgb(0, 0, 100)'))
layout = go.Layout(
title="Histogram Frequency Counts"
)
fig = go.Figure(data=go.Data([trace]), layout=layout)
py.iplot(fig, filename='histogram-freq-counts-larger-bins')
# In[1]:
from IPython.display import display, HTML
display(HTML(''))
display(HTML(''))
get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade')
import publisher
publisher.publish(
'python-Frequency-Counts.ipynb', 'python/frequency-counts/', 'Frequency Counts | plotly',
'Learn how to perform frequency counts using Python.',
title='Frequency Counts in Python. | plotly',
name='Frequency Counts',
language='python',
page_type='example_index', has_thumbnail='false', display_as='statistics', order=2,
ipynb= '~notebook_demo/111')
# In[ ]: