#!/usr/bin/env python # coding: utf-8 # #### New to Plotly? # Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/). #
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online). #
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! # #### Version Check # Note: Linear fits are available in version 1.9.2+
# Run `pip install plotly --upgrade` to update your Plotly version # In[1]: import plotly plotly.__version__ # ### Linear Fit # In[2]: # Learn about API authentication here: https://plotly.com/python/getting-started # Find your api_key here: https://plotly.com/settings/api import plotly.plotly as py import plotly.graph_objs as go # Scientific libraries from numpy import arange,array,ones from scipy import stats xi = arange(0,9) A = array([ xi, ones(9)]) # (Almost) linear sequence y = [19, 20, 20.5, 21.5, 22, 23, 23, 25.5, 24] # Generated linear fit slope, intercept, r_value, p_value, std_err = stats.linregress(xi,y) line = slope*xi+intercept # Creating the dataset, and generating the plot trace1 = go.Scatter( x=xi, y=y, mode='markers', marker=go.Marker(color='rgb(255, 127, 14)'), name='Data' ) trace2 = go.Scatter( x=xi, y=line, mode='lines', marker=go.Marker(color='rgb(31, 119, 180)'), name='Fit' ) annotation = go.Annotation( x=3.5, y=23.5, text='$R^2 = 0.9551,\\Y = 0.716X + 19.18$', showarrow=False, font=go.Font(size=16) ) layout = go.Layout( title='Linear Fit in Python', plot_bgcolor='rgb(229, 229, 229)', xaxis=go.XAxis(zerolinecolor='rgb(255,255,255)', gridcolor='rgb(255,255,255)'), yaxis=go.YAxis(zerolinecolor='rgb(255,255,255)', gridcolor='rgb(255,255,255)'), annotations=[annotation] ) data = [trace1, trace2] fig = go.Figure(data=data, layout=layout) py.plot(fig, filename='Linear-Fit-in-python') # In[4]: from IPython.display import display, HTML display(HTML('')) display(HTML('')) get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade') import publisher publisher.publish( 'linear-fits.ipynb', 'python/linear-fits/', 'Linear Fit', 'Create a linear fit / regression in Python and add a line of best fit to your chart.', title = 'Linear Fit', name = 'Linear Fit', has_thumbnail='true', thumbnail='thumbnail/linear_fit.jpg', language='python', page_type='example_index', display_as='statistics', order=10, ipynb= '~notebook_demo/139') # In[ ]: