#!/usr/bin/env python
# coding: utf-8
# #### New to Plotly?
# Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).
#
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).
#
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!
# #### Basic Population Pyramid Chart
# If you're starting with binned data, use a `go.Bar` trace.
# In[1]:
import plotly.plotly as py
import plotly.graph_objs as go
import numpy as np
women_bins = np.array([-600, -623, -653, -650, -670, -578, -541, -411, -322, -230])
men_bins = np.array([600, 623, 653, 650, 670, 578, 541, 360, 312, 170])
y = list(range(0, 100, 10))
layout = go.Layout(yaxis=go.layout.YAxis(title='Age'),
xaxis=go.layout.XAxis(
range=[-1200, 1200],
tickvals=[-1000, -700, -300, 0, 300, 700, 1000],
ticktext=[1000, 700, 300, 0, 300, 700, 1000],
title='Number'),
barmode='overlay',
bargap=0.1)
data = [go.Bar(y=y,
x=men_bins,
orientation='h',
name='Men',
hoverinfo='x',
marker=dict(color='powderblue')
),
go.Bar(y=y,
x=women_bins,
orientation='h',
name='Women',
text=-1 * women_bins.astype('int'),
hoverinfo='text',
marker=dict(color='seagreen')
)]
py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/bar_pyramid')
# #### Stacked Population Pyramid
# In[2]:
import plotly.plotly as py
import plotly.graph_objs as go
import numpy as np
women_bins = np.array([-600, -623, -653, -650, -670, -578, -541, -411, -322, -230])
men_bins = np.array([600, 623, 653, 650, 670, 578, 541, 360, 312, 170])
women_with_dogs_bins = np.array([-0, -3, -308, -281, -245, -231, -212, -132, -74, -76])
men_with_dogs_bins = np.array([0, 1, 300, 273, 256, 211, 201, 170, 145, 43])
y = list(range(0, 100, 10))
layout = go.Layout(yaxis=go.layout.YAxis(title='Age'),
xaxis=go.layout.XAxis(
range=[-1200, 1200],
tickvals=[-1000, -700, -300, 0, 300, 700, 1000],
ticktext=[1000, 700, 300, 0, 300, 700, 1000],
title='Number'),
barmode='overlay',
bargap=0.1)
data = [go.Bar(y=y,
x=men_bins,
orientation='h',
name='Men',
hoverinfo='x',
marker=dict(color='powderblue')
),
go.Bar(y=y,
x=women_bins,
orientation='h',
name='Women',
text=-1 * women_bins.astype('int'),
hoverinfo='text',
marker=dict(color='seagreen')
),
go.Bar(y=y,
x=men_with_dogs_bins,
orientation='h',
hoverinfo='x',
showlegend=False,
opacity=0.5,
marker=dict(color='teal')
),
go.Bar(y=y,
x=women_with_dogs_bins,
orientation='h',
text=-1 * women_bins.astype('int'),
hoverinfo='text',
showlegend=False,
opacity=0.5,
marker=dict(color='darkgreen')
)]
py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/stacked_bar_pyramid')
# #### Population Pyramid with Binning
# If you want to quickly create a Population Pyramid from raw data, try `go.Histogram`.
# In[3]:
import plotly.plotly as py
import plotly.graph_objs as go
import numpy as np
layout = go.Layout(barmode='overlay',
yaxis=go.layout.YAxis(range=[0, 90], title='Age'),
xaxis=go.layout.XAxis(
tickvals=[-150, -100, -50, 0, 50, 100, 150],
ticktext=[150, 100, 50, 0, 50, 100, 150],
title='Number'))
data = [go.Histogram(
y=np.random.exponential(50, 1000),
orientation='h',
name='Men',
marker=dict(color='plum'),
hoverinfo='skip'
),
go.Histogram(
y=np.random.exponential(55, 1000),
orientation='h',
name='Women',
marker=dict(color='purple'),
hoverinfo='skip',
x=-1 * np.ones(1000),
histfunc="sum"
)
]
py.iplot(dict(data=data, layout=layout), filename='EXAMPLES/histogram_pyramid')
# ### More Bar and Histogram Examples
# See more examples of [horizontal bar charts](https://plotly.com/python/horizontal-bar-charts/), [bar charts](https://plotly.com/python/bar-charts/) and [histograms](https://plotly.com/python/histograms/).
# ### Reference
# See https://plotly.com/python/reference/#bar and https://plotly.com/python/reference/#histogram for more information and chart attribute options!
# In[1]:
from IPython.display import display, HTML
display(HTML(''))
display(HTML(''))
get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade')
import publisher
publisher.publish(
'pyramid-charts.ipynb', 'python/population-pyramid-charts/', 'Python Population Pyramid Charts | Plotly',
'How to make Population Pyramid Charts in Python with Plotly.',
title = 'Population Pyramid Charts | Plotly',
name = 'Population Pyramid Charts',
thumbnail='thumbnail/pyramid.jpg', language='python',
has_thumbnail='true', display_as='basic', order=5.01,
ipynb= '~notebook_demo/221')
# In[ ]: