#!/usr/bin/env python
# coding: utf-8
# #### New to Plotly?
# Plotly's Python library is free and open source! [Get started](https://plot.ly/python/getting-started/) by downloading the client and [reading the primer](https://plot.ly/python/getting-started/).
# You can set up Plotly to work in [online](https://plot.ly/python/getting-started/#initialization-for-online-plotting) or [offline](https://plot.ly/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plot.ly/python/getting-started/#start-plotting-online).
# We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!
# #### Imports
# The tutorial below imports [NumPy](http://www.numpy.org/), [Pandas](https://plot.ly/pandas/intro-to-pandas-tutorial/), [SciPy](https://www.scipy.org/) and [PeakUtils](http://pythonhosted.org/PeakUtils/).
# In[3]:
import plotly.plotly as py
import plotly.graph_objs as go
import plotly.figure_factory as ff
import numpy as np
import pandas as pd
import scipy
import peakutils
# #### Tips
# Our method for finding the area under any peak is to find the area from the `data values` to the x-axis, the area from the `baseline` to the x-axis, and then take the difference between them. In particular, we want to find the areas of these functions defined on the x-axis interval $I$ under the peak.
#
# Let $T(x)$ be the function of the data, $B(x)$ the function of the baseline, and $Area$ the peak integration area between the baseline and the first peak. Since $T(x) \geq B(x)$ for all $x$, then we know that
#
# $$
# \begin{align}
# A = \int_{I} T(x)dx - \int_{I} B(x)dx
# \end{align}
# $$
# #### Import Data
# For our example below we will import some data on milk production by month:
# In[4]:
milk_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/monthly-milk-production-pounds.csv')
time_series = milk_data['Monthly milk production (pounds per cow)']
time_series = np.asarray(time_series)
df = milk_data[0:15]
table = ff.create_table(df)
py.iplot(table, filename='milk-production-dataframe')
# #### Area Under One Peak
# In[5]:
baseline_values = peakutils.baseline(time_series)
x = [j for j in range(len(time_series))]
time_series = time_series.tolist()
baseline_values = baseline_values.tolist()
rev_baseline_values = baseline_values[:11]
rev_baseline_values.reverse()
area_x = [0,1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1]
area_y = time_series[:11] + rev_baseline_values
trace = go.Scatter(
x=x,
y=time_series,
mode='lines',
marker=dict(
color='#B292EA',
),
name='Original Plot'
)
trace2 = go.Scatter(
x=x,
y=baseline_values,
mode='markers',
marker=dict(
size=3,
color='#EB55BF',
),
name='Bassline'
)
trace3 = go.Scatter(
x=area_x,
y=area_y,
mode='lines+markers',
marker=dict(
size=4,
color='rgb(255,0,0)',
),
name='1st Peak Outline'
)
first_peak_x = [j for j in range(11)]
area_under_first_peak = np.trapz(time_series[:11], first_peak_x) - np.trapz(baseline_values[:11], first_peak_x)
area_under_first_peak
annotation = go.Annotation(
x=80,
y=1000,
text='The peak integration for the first peak is approximately %s' % (area_under_first_peak),
showarrow=False
)
layout = go.Layout(
annotations=[annotation]
)
trace_data = [trace, trace2, trace3]
fig = go.Figure(data=trace_data, layout=layout)
py.iplot(fig, filename='milk-production-peak-integration')
# In[6]:
from IPython.display import display, HTML
display(HTML(''))
display(HTML(''))
get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade')
import publisher
publisher.publish(
'python-Peak-Integration.ipynb', 'python/peak-integration/', 'Peak Integration | plotly',
'Learn how to integrate the area between peaks and bassline in Python.',
title='Peak Integration in Python | plotly',
name='Peak Integration',
language='python',
page_type='example_index', has_thumbnail='false', display_as='peak-analysis', order=4,
ipynb= '~notebook_demo/121')
# In[ ]: