#!/usr/bin/env python # coding: utf-8 # #### New to Plotly? # Plotly's Python library is free and open source! [Get started](https://plot.ly/python/getting-started/) by downloading the client and [reading the primer](https://plot.ly/python/getting-started/). #
You can set up Plotly to work in [online](https://plot.ly/python/getting-started/#initialization-for-online-plotting) or [offline](https://plot.ly/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plot.ly/python/getting-started/#start-plotting-online). #
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! # #### Imports # The tutorial below imports [NumPy](http://www.numpy.org/), [Pandas](https://plot.ly/pandas/intro-to-pandas-tutorial/), [SciPy](https://www.scipy.org/) and [PeakUtils](http://pythonhosted.org/PeakUtils/). # In[3]: import plotly.plotly as py import plotly.graph_objs as go import plotly.figure_factory as ff import numpy as np import pandas as pd import scipy import peakutils # #### Tips # Our method for finding the area under any peak is to find the area from the `data values` to the x-axis, the area from the `baseline` to the x-axis, and then take the difference between them. In particular, we want to find the areas of these functions defined on the x-axis interval $I$ under the peak. # # Let $T(x)$ be the function of the data, $B(x)$ the function of the baseline, and $Area$ the peak integration area between the baseline and the first peak. Since $T(x) \geq B(x)$ for all $x$, then we know that # # $$ # \begin{align} # A = \int_{I} T(x)dx - \int_{I} B(x)dx # \end{align} # $$ # #### Import Data # For our example below we will import some data on milk production by month: # In[4]: milk_data = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/monthly-milk-production-pounds.csv') time_series = milk_data['Monthly milk production (pounds per cow)'] time_series = np.asarray(time_series) df = milk_data[0:15] table = ff.create_table(df) py.iplot(table, filename='milk-production-dataframe') # #### Area Under One Peak # In[5]: baseline_values = peakutils.baseline(time_series) x = [j for j in range(len(time_series))] time_series = time_series.tolist() baseline_values = baseline_values.tolist() rev_baseline_values = baseline_values[:11] rev_baseline_values.reverse() area_x = [0,1,2,3,4,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1] area_y = time_series[:11] + rev_baseline_values trace = go.Scatter( x=x, y=time_series, mode='lines', marker=dict( color='#B292EA', ), name='Original Plot' ) trace2 = go.Scatter( x=x, y=baseline_values, mode='markers', marker=dict( size=3, color='#EB55BF', ), name='Bassline' ) trace3 = go.Scatter( x=area_x, y=area_y, mode='lines+markers', marker=dict( size=4, color='rgb(255,0,0)', ), name='1st Peak Outline' ) first_peak_x = [j for j in range(11)] area_under_first_peak = np.trapz(time_series[:11], first_peak_x) - np.trapz(baseline_values[:11], first_peak_x) area_under_first_peak annotation = go.Annotation( x=80, y=1000, text='The peak integration for the first peak is approximately %s' % (area_under_first_peak), showarrow=False ) layout = go.Layout( annotations=[annotation] ) trace_data = [trace, trace2, trace3] fig = go.Figure(data=trace_data, layout=layout) py.iplot(fig, filename='milk-production-peak-integration') # In[6]: from IPython.display import display, HTML display(HTML('')) display(HTML('')) get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade') import publisher publisher.publish( 'python-Peak-Integration.ipynb', 'python/peak-integration/', 'Peak Integration | plotly', 'Learn how to integrate the area between peaks and bassline in Python.', title='Peak Integration in Python | plotly', name='Peak Integration', language='python', page_type='example_index', has_thumbnail='false', display_as='peak-analysis', order=4, ipynb= '~notebook_demo/121') # In[ ]: