#!/usr/bin/env python
# coding: utf-8
# #### New to Plotly?
# Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/).
#
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online).
#
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started!
# #### Version Check
# Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version.
# In[1]:
import plotly
plotly.__version__
# ### U.S. Airports Map
# In[2]:
import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv')
df.head()
df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str)
scl = [ [0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\
[0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"] ]
data = [ go.Scattergeo(
locationmode = 'USA-states',
lon = df['long'],
lat = df['lat'],
text = df['text'],
mode = 'markers',
marker = dict(
size = 8,
opacity = 0.8,
reversescale = True,
autocolorscale = False,
symbol = 'square',
line = dict(
width=1,
color='rgba(102, 102, 102)'
),
colorscale = scl,
cmin = 0,
color = df['cnt'],
cmax = df['cnt'].max(),
colorbar=dict(
title="Incoming flights
February 2011"
)
))]
layout = dict(
title = 'Most trafficked US airports
(Hover for airport names)',
geo = dict(
scope='usa',
projection=dict( type='albers usa' ),
showland = True,
landcolor = "rgb(250, 250, 250)",
subunitcolor = "rgb(217, 217, 217)",
countrycolor = "rgb(217, 217, 217)",
countrywidth = 0.5,
subunitwidth = 0.5
),
)
fig = go.Figure(data=data, layout=layout )
py.iplot(fig, filename='d3-airports' )
# ### North American Precipitation Map
# In[3]:
import plotly.plotly as py
import plotly.graph_objs as go
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2015_06_30_precipitation.csv')
scl = [0,"rgb(150,0,90)"],[0.125,"rgb(0, 0, 200)"],[0.25,"rgb(0, 25, 255)"],\
[0.375,"rgb(0, 152, 255)"],[0.5,"rgb(44, 255, 150)"],[0.625,"rgb(151, 255, 0)"],\
[0.75,"rgb(255, 234, 0)"],[0.875,"rgb(255, 111, 0)"],[1,"rgb(255, 0, 0)"]
data = [go.Scattergeo(
lat = df['Lat'],
lon = df['Lon'],
text = df['Globvalue'].astype(str) + ' inches',
marker = dict(
color = df['Globvalue'],
colorscale = scl,
reversescale = True,
opacity = 0.7,
size = 2,
colorbar = dict(
thickness = 10,
titleside = "right",
outlinecolor = "rgba(68, 68, 68, 0)",
ticks = "outside",
ticklen = 3,
showticksuffix = "last",
ticksuffix = " inches",
dtick = 0.1
)
)
)]
layout = dict(
geo = dict(
scope = 'north america',
showland = True,
landcolor = "rgb(212, 212, 212)",
subunitcolor = "rgb(255, 255, 255)",
countrycolor = "rgb(255, 255, 255)",
showlakes = True,
lakecolor = "rgb(255, 255, 255)",
showsubunits = True,
showcountries = True,
resolution = 50,
projection = dict(
type = 'conic conformal',
rotation = dict(
lon = -100
)
),
lonaxis = dict(
showgrid = True,
gridwidth = 0.5,
range= [ -140.0, -55.0 ],
dtick = 5
),
lataxis = dict (
showgrid = True,
gridwidth = 0.5,
range= [ 20.0, 60.0 ],
dtick = 5
)
),
title = 'US Precipitation 06-30-2015
Source: NOAA',
)
fig = go.Figure(data=data, layout=layout )
py.iplot(fig, filename='precipitation')
# #### Reference
# See https://plotly.com/python/reference/#scattergeo and https://plotly.com/python/reference/#layout-geo for more information and chart attribute options!
# In[4]:
from IPython.display import display, HTML
display(HTML(''))
display(HTML(''))
get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade')
import publisher
publisher.publish(
'scatter-plot-on-map.ipynb', 'python/scatter-plots-on-maps/', 'Python Scatter Plots on Maps | Examples | Plotly',
'How to make scatter plots on maps in Python. Scatter plots on maps highlight geographic areas and can be colored by value.',
title = 'Python Scatter Plots on Maps | Plotly',
name = 'Scatter Plots on Maps',
has_thumbnail='true', thumbnail='thumbnail/scatter-plot-on-maps.jpg',
language='python',
display_as='maps', order=2,
ipynb= '~notebook_demo/57')
# In[ ]: