#!/usr/bin/env python # coding: utf-8 # #### New to Plotly? # Plotly's Python library is free and open source! [Get started](https://plotly.com/python/getting-started/) by downloading the client and [reading the primer](https://plotly.com/python/getting-started/). #
You can set up Plotly to work in [online](https://plotly.com/python/getting-started/#initialization-for-online-plotting) or [offline](https://plotly.com/python/getting-started/#initialization-for-offline-plotting) mode, or in [jupyter notebooks](https://plotly.com/python/getting-started/#start-plotting-online). #
We also have a quick-reference [cheatsheet](https://images.plot.ly/plotly-documentation/images/python_cheat_sheet.pdf) (new!) to help you get started! # #### Version Check # Plotly's python package is updated frequently. Run `pip install plotly --upgrade` to use the latest version. # In[1]: import plotly plotly.__version__ # ### U.S. Airports Map # In[2]: import plotly.plotly as py import plotly.graph_objs as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_february_us_airport_traffic.csv') df.head() df['text'] = df['airport'] + '' + df['city'] + ', ' + df['state'] + '' + 'Arrivals: ' + df['cnt'].astype(str) scl = [ [0,"rgb(5, 10, 172)"],[0.35,"rgb(40, 60, 190)"],[0.5,"rgb(70, 100, 245)"],\ [0.6,"rgb(90, 120, 245)"],[0.7,"rgb(106, 137, 247)"],[1,"rgb(220, 220, 220)"] ] data = [ go.Scattergeo( locationmode = 'USA-states', lon = df['long'], lat = df['lat'], text = df['text'], mode = 'markers', marker = dict( size = 8, opacity = 0.8, reversescale = True, autocolorscale = False, symbol = 'square', line = dict( width=1, color='rgba(102, 102, 102)' ), colorscale = scl, cmin = 0, color = df['cnt'], cmax = df['cnt'].max(), colorbar=dict( title="Incoming flights
February 2011" ) ))] layout = dict( title = 'Most trafficked US airports
(Hover for airport names)', geo = dict( scope='usa', projection=dict( type='albers usa' ), showland = True, landcolor = "rgb(250, 250, 250)", subunitcolor = "rgb(217, 217, 217)", countrycolor = "rgb(217, 217, 217)", countrywidth = 0.5, subunitwidth = 0.5 ), ) fig = go.Figure(data=data, layout=layout ) py.iplot(fig, filename='d3-airports' ) # ### North American Precipitation Map # In[3]: import plotly.plotly as py import plotly.graph_objs as go import pandas as pd df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2015_06_30_precipitation.csv') scl = [0,"rgb(150,0,90)"],[0.125,"rgb(0, 0, 200)"],[0.25,"rgb(0, 25, 255)"],\ [0.375,"rgb(0, 152, 255)"],[0.5,"rgb(44, 255, 150)"],[0.625,"rgb(151, 255, 0)"],\ [0.75,"rgb(255, 234, 0)"],[0.875,"rgb(255, 111, 0)"],[1,"rgb(255, 0, 0)"] data = [go.Scattergeo( lat = df['Lat'], lon = df['Lon'], text = df['Globvalue'].astype(str) + ' inches', marker = dict( color = df['Globvalue'], colorscale = scl, reversescale = True, opacity = 0.7, size = 2, colorbar = dict( thickness = 10, titleside = "right", outlinecolor = "rgba(68, 68, 68, 0)", ticks = "outside", ticklen = 3, showticksuffix = "last", ticksuffix = " inches", dtick = 0.1 ) ) )] layout = dict( geo = dict( scope = 'north america', showland = True, landcolor = "rgb(212, 212, 212)", subunitcolor = "rgb(255, 255, 255)", countrycolor = "rgb(255, 255, 255)", showlakes = True, lakecolor = "rgb(255, 255, 255)", showsubunits = True, showcountries = True, resolution = 50, projection = dict( type = 'conic conformal', rotation = dict( lon = -100 ) ), lonaxis = dict( showgrid = True, gridwidth = 0.5, range= [ -140.0, -55.0 ], dtick = 5 ), lataxis = dict ( showgrid = True, gridwidth = 0.5, range= [ 20.0, 60.0 ], dtick = 5 ) ), title = 'US Precipitation 06-30-2015
Source: NOAA', ) fig = go.Figure(data=data, layout=layout ) py.iplot(fig, filename='precipitation') # #### Reference # See https://plotly.com/python/reference/#scattergeo and https://plotly.com/python/reference/#layout-geo for more information and chart attribute options! # In[4]: from IPython.display import display, HTML display(HTML('')) display(HTML('')) get_ipython().system(' pip install git+https://github.com/plotly/publisher.git --upgrade') import publisher publisher.publish( 'scatter-plot-on-map.ipynb', 'python/scatter-plots-on-maps/', 'Python Scatter Plots on Maps | Examples | Plotly', 'How to make scatter plots on maps in Python. Scatter plots on maps highlight geographic areas and can be colored by value.', title = 'Python Scatter Plots on Maps | Plotly', name = 'Scatter Plots on Maps', has_thumbnail='true', thumbnail='thumbnail/scatter-plot-on-maps.jpg', language='python', display_as='maps', order=2, ipynb= '~notebook_demo/57') # In[ ]: