#!/usr/bin/env python
# coding: utf-8
#
# # PyTorch Lightning Basic GAN Tutorial ⚡
#
# How to train a GAN!
#
# Main takeaways:
# 1. Generator and discriminator are arbitrary PyTorch modules.
# 2. training_step does both the generator and discriminator training.
#
# ---
#
# - Give us a ⭐ [on Github](https://www.github.com/PytorchLightning/pytorch-lightning/)
# - Check out [the documentation](https://pytorch-lightning.readthedocs.io/en/latest/)
# - Join us [on Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)
# ### Setup
# Lightning is easy to install. Simply `pip install pytorch-lightning`
# In[ ]:
get_ipython().system(' pip install pytorch-lightning --quiet')
# In[2]:
import os
from argparse import ArgumentParser
from collections import OrderedDict
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import pytorch_lightning as pl
# ### MNIST DataModule
#
# Below, we define a DataModule for the MNIST Dataset. To learn more about DataModules, check out our tutorial on them or see the [latest docs](https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html).
# In[3]:
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, data_dir: str = './', batch_size: int = 64, num_workers: int = 8):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# self.dims is returned when you call dm.size()
# Setting default dims here because we know them.
# Could optionally be assigned dynamically in dm.setup()
self.dims = (1, 28, 28)
self.num_classes = 10
def prepare_data(self):
# download
MNIST(self.data_dir, train=True, download=True)
MNIST(self.data_dir, train=False, download=True)
def setup(self, stage=None):
# Assign train/val datasets for use in dataloaders
if stage == 'fit' or stage is None:
mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
# Assign test dataset for use in dataloader(s)
if stage == 'test' or stage is None:
self.mnist_test = MNIST(self.data_dir, train=False, transform=self.transform)
def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=self.batch_size, num_workers=self.num_workers)
def val_dataloader(self):
return DataLoader(self.mnist_val, batch_size=self.batch_size, num_workers=self.num_workers)
def test_dataloader(self):
return DataLoader(self.mnist_test, batch_size=self.batch_size, num_workers=self.num_workers)
# ### A. Generator
# In[4]:
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super().__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh()
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
# ### B. Discriminator
# In[5]:
class Discriminator(nn.Module):
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
nn.Sigmoid(),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
# ### C. GAN
#
# #### A couple of cool features to check out in this example...
#
# - We use `some_tensor.type_as(another_tensor)` to make sure we initialize new tensors on the right device (i.e. GPU, CPU).
# - Lightning will put your dataloader data on the right device automatically
# - In this example, we pull from latent dim on the fly, so we need to dynamically add tensors to the right device.
# - `type_as` is the way we recommend to do this.
# - This example shows how to use multiple dataloaders in your `LightningModule`.
# In[6]:
class GAN(pl.LightningModule):
def __init__(
self,
channels,
width,
height,
latent_dim: int = 100,
lr: float = 0.0002,
b1: float = 0.5,
b2: float = 0.999,
batch_size: int = 64,
**kwargs
):
super().__init__()
self.save_hyperparameters()
# networks
data_shape = (channels, width, height)
self.generator = Generator(latent_dim=self.hparams.latent_dim, img_shape=data_shape)
self.discriminator = Discriminator(img_shape=data_shape)
self.validation_z = torch.randn(8, self.hparams.latent_dim)
self.example_input_array = torch.zeros(2, self.hparams.latent_dim)
def forward(self, z):
return self.generator(z)
def adversarial_loss(self, y_hat, y):
return F.binary_cross_entropy(y_hat, y)
def training_step(self, batch, batch_idx, optimizer_idx):
imgs, _ = batch
# sample noise
z = torch.randn(imgs.shape[0], self.hparams.latent_dim)
z = z.type_as(imgs)
# train generator
if optimizer_idx == 0:
# generate images
self.generated_imgs = self(z)
# log sampled images
sample_imgs = self.generated_imgs[:6]
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, 0)
# ground truth result (ie: all fake)
# put on GPU because we created this tensor inside training_loop
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
# adversarial loss is binary cross-entropy
g_loss = self.adversarial_loss(self.discriminator(self(z)), valid)
tqdm_dict = {'g_loss': g_loss}
output = OrderedDict({
'loss': g_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
# train discriminator
if optimizer_idx == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
# how well can it label as fake?
fake = torch.zeros(imgs.size(0), 1)
fake = fake.type_as(imgs)
fake_loss = self.adversarial_loss(
self.discriminator(self(z).detach()), fake)
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
output = OrderedDict({
'loss': d_loss,
'progress_bar': tqdm_dict,
'log': tqdm_dict
})
return output
def configure_optimizers(self):
lr = self.hparams.lr
b1 = self.hparams.b1
b2 = self.hparams.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
def on_epoch_end(self):
z = self.validation_z.type_as(self.generator.model[0].weight)
# log sampled images
sample_imgs = self(z)
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, self.current_epoch)
# In[ ]:
dm = MNISTDataModule()
model = GAN(*dm.size())
trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20)
trainer.fit(model, dm)
# In[ ]:
# Start tensorboard.
get_ipython().run_line_magic('load_ext', 'tensorboard')
get_ipython().run_line_magic('tensorboard', '--logdir lightning_logs/')
#
# Congratulations - Time to Join the Community!
#
#
# Congratulations on completing this notebook tutorial! If you enjoyed this and would like to join the Lightning movement, you can do so in the following ways!
#
# ### Star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) on GitHub
# The easiest way to help our community is just by starring the GitHub repos! This helps raise awareness of the cool tools we're building.
#
# * Please, star [Lightning](https://github.com/PyTorchLightning/pytorch-lightning)
#
# ### Join our [Slack](https://join.slack.com/t/pytorch-lightning/shared_invite/zt-f6bl2l0l-JYMK3tbAgAmGRrlNr00f1A)!
# The best way to keep up to date on the latest advancements is to join our community! Make sure to introduce yourself and share your interests in `#general` channel
#
# ### Interested by SOTA AI models ! Check out [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)
# Bolts has a collection of state-of-the-art models, all implemented in [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) and can be easily integrated within your own projects.
#
# * Please, star [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts)
#
# ### Contributions !
# The best way to contribute to our community is to become a code contributor! At any time you can go to [Lightning](https://github.com/PyTorchLightning/pytorch-lightning) or [Bolt](https://github.com/PyTorchLightning/pytorch-lightning-bolts) GitHub Issues page and filter for "good first issue".
#
# * [Lightning good first issue](https://github.com/PyTorchLightning/pytorch-lightning/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)
# * [Bolt good first issue](https://github.com/PyTorchLightning/pytorch-lightning-bolts/issues?q=is%3Aopen+is%3Aissue+label%3A%22good+first+issue%22)
# * You can also contribute your own notebooks with useful examples !
#
# ### Great thanks from the entire Pytorch Lightning Team for your interest !
#
#