#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from scipy.linalg import svd from sklearn.datasets import load_boston from sklearn.linear_model import RidgeCV as skRidgeCV # ### Implementation 1 # - based on svd # - only support fit_intercept=False # - similar to scikit-learn gcv_mode='svd' # In[2]: class RidgeCV(): def __init__(self, alphas=[0.1, 1.0, 10]): self.alphas = alphas def fit(self, X, y): U, S, VT = svd(X, full_matrices=False) cv_values = np.zeros((X.shape[0], len(self.alphas))) best_score, best_coef, best_alpha = None, None, None for i, alpha in enumerate(self.alphas): w = (S ** 2 + alpha) ** -1 - alpha ** -1 G_inv = np.dot(U * w[np.newaxis, :], U.T) + np.eye(X.shape[0]) * alpha ** -1 c = np.dot(G_inv, y) looe = c / np.diag(G_inv) errors = looe ** 2 cv_values[:, i] = errors score = -np.mean(errors) if best_score is None or best_score < score: best_score = score best_coef = c best_alpha = alpha self.cv_values_ = cv_values self.best_score = best_score self.coef_ = np.dot(X.T, best_coef) self.alpha_ = best_alpha return self def predict(self, X): return np.dot(X, self.coef_) # In[3]: X, y = load_boston(return_X_y=True) X -= X.mean(axis=0) y -= y.mean() alpha = [0.1, 1, 10] reg1 = RidgeCV().fit(X, y) reg2 = skRidgeCV(fit_intercept=False, store_cv_values=True).fit(X, y) assert np.allclose(reg1.cv_values_, reg2.cv_values_) assert np.allclose(reg1.coef_, reg2.coef_) assert np.allclose(reg1.alpha_, reg2.alpha_) pred1 = reg1.predict(X) pred2 = reg2.predict(X) assert np.allclose(pred1, pred2)