#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from sklearn.metrics import mean_squared_error as skmean_squared_error # In[2]: def mean_squared_error(y_true, y_pred): return np.mean((y_true - y_pred) ** 2) # In[3]: for i in range(10): rng = np.random.RandomState(i) y_true = rng.rand(10) y_pred = rng.rand(10) score1 = mean_squared_error(y_true, y_pred) score2 = skmean_squared_error(y_true, y_pred) assert np.isclose(score1, score2)