#!/usr/bin/env python # coding: utf-8 # In[1]: import numpy as np from sklearn.metrics import roc_curve as skroc_curve # In[2]: def roc_curve(y_true, y_score): desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_true = y_true[desc_score_indices] y_score = y_score[desc_score_indices] distinct_value_indices = np.where(np.diff(y_score))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] tps = np.cumsum(y_true)[threshold_idxs] fps = 1 + threshold_idxs - tps thresholds = y_score[threshold_idxs] tps = np.r_[0, tps] fps = np.r_[0, fps] thresholds = np.r_[thresholds[0] + 1, thresholds] tpr = tps / tps[-1] fpr = fps / fps[-1] return fpr, tpr, thresholds # In[3]: for i in range(10): rng = np.random.RandomState(i) y_true = rng.randint(2, size=10) y_score = rng.randint(11, size=10) / 10 ans1 = roc_curve(y_true, y_score) ans2 = skroc_curve(y_true, y_score, drop_intermediate=False) assert np.allclose(ans1[0], ans2[0]) assert np.allclose(ans1[1], ans2[1]) assert np.allclose(ans1[2], ans2[2])